References
- Ai, C. (2023). Recent advances on the emulsifying properties of dietary polysaccharides. eFood, 4(4), e106. DOI: 10.1002/efd2.106
- Alfakeer, M., Rub, M. A., Azum, N., Marwani, H. M., Alamry, K. A., Hoque, M. A., Asiri, A. M. (2024). Interaction of antidepressant drug with surfactant mixture in various compositions: effect of electrolyte and urea. Chem. Pap. 78(1), 23–34.
- Awwad, S., Issa, R., Alnsour, L., Albals, D., Al-Momani, I. (2021). Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels. Molecules, 26(24), 7502. DOI: 10.3390/molecules26247502
- Banipal, T., Kaur, H., Kaur, A. and Banipal, P.K. (2016). Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier. Food Chem. 190, 599–606. DOI: 10.1016/j.foodchem.2015.05.130.
- Belay, A., Gholap, A.V. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. Afr. J. Pure Appl. Chem. 3, 234–40. DOI: 10.5897/AJPAC.
- Belay, A., Ture, K., Redi, M., Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem. 108, 310–315. DOI: 10.1016/j.foodchem.2007.10.024.
- Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76.
- Chauhan, S., Chauhan, M. S., Sharma, P., Rana, D. S. (2013). Thermodynamics and micellization of cetyltrimethyl ammonium bromide in the presence of lysozyme. J. Mol. Liq. 187, 1–6. DOI: 10.1016/j.molliq.2013.06.001
- Dickinson, E., Ritzoulis, C. (2000). Creaming and rheology of oil-in-water emulsions containing sodium dodecyl sulfate and sodium caseinate. J. Colloid Interface Sci. 224(1), 148–154. DOI: 10.1006/jcis.1999.6682
- Food and Drug Administration, (2024). Code of Federal Regulations Title 21 —Food and Drugs. Chapter I —Food and Drug Administration Department of Health and Human Services. Subchapter B —Food for Human Consumption. Part 172 —Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart I —Multipurpose Additives. Sec. 172.822. Sodium lauryl sulfate (up to date as of 2/29/2024). https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-I/section-172.822.
- Gayathri, G., D’Souza, J.Q., Sundaram, N.G. (2023). UV induced photocatalytic degradation of caffeine using TiO2–H-beta zeolite composite. Minerals, 13, 465. DOI: 10.3390/min13040465.
- Hafizah, M. A. E., Riyadi, A. F., Manaf, A. (2019, April). Particle size reduction of polyaniline assisted by anionic emulsifier of sodium dodecyl sulphate (SDS) through emulsion polymerization. In IOP Conference Series: Materials Science and Engineering (Vol. 515, No. 1, p. 012080). IOP Publishing. DOI: 10.1088/1757-899X/515/1/012080
- Hajimehdipoor, H., Shahrestani, R., Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn (RJP), 1, 35–40.
- Halmos, E.P., Mack, A., Gibson, P.R. (2019). Review article: emulsifiers in the food supply and implications for gastrointestinal disease, Aliment Pharmacol Ther. 49, 41–50, DOI: 10.1111/apt.15045
- Irshad, M., Zafaryab, M., Singh, M., Rizvi, M.M. (2012). Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem. 2012, 157125. DOI: 10.1155/2012/157125.
- Jaiswal, P.V, Ijeri, V.S., Srivastava, A.K. (2005). Effect of surfactants on the dissociation constants of ascorbic and maleic acids. Colloids Surf. B: Biointerfaces. 46, 45–51. DOI: 10.1016/j.colsurfb.2005.09.001.
- Kabir-ud-Din, Sharma, G., Naqvi, A. Z. (2011). Micellization and interfacial behavior of binary surfactant mixtures based on cationic geminis and nonionic Tweens. Colloids Surf. A: Physicochem. Eng. 385(1–3), 63–71. DOI: 10.1016/j.colsurfa.2011.05.053
- Kasiri, N., Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023–1031. DOI: 10.1016/j.ijbiomac.2017.08.112
- Kaur, R., Sharma, M., Ji D., Xu M, Agyei D. (2020). Structural features, modification, and functionalities of beta-glucan. Fibers, 8(1), 1. DOI: 10.3390/fib8010001
- Khodaparast, S., Sharratt, W. N., Tyagi, G., Dalgliesh, R. M., Robles, E. S., Cabral, J. T. (2021). Pure and mixed aqueous micellar solutions of Sodium Dodecyl sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO): Role of temperature and composition. J. Colloid Interface Sci. 582, 1116–1127. DOI: 10.1016/j.jcis.2020.08.002
- Kiewlicz, J., Kwaśniewska, D. (2023). Study of the properties of binary systems: Selected derivatives of B-vitamins-cationic surfactant. J. Mol. Liq. 374, Article 121237. DOI: 10.1016/j.molliq.2023.121237.
- Kumar, D., Rub, M. A., Azum, N., Asiri, A. M. (2018). Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini). J. Phys. Org. Chem., 31(1), e3730. DOI: 10.1002/poc.3730
- Kwaśniewska, D., Kiewlicz, J. (2022a). Spectroscopic and tensiometric considerations on anionic surfactants (SDS) and ascorbic acid/ascorbates interactions. J. Saudi Chem. Soc. 26, 101532. DOI: 10.1016/j.jscs.2022.101532.
- Kwaśniewska, D., Kiewlicz, J. (2022b). Study of interaction between cationic surfactant (CTAB) and ascorbic acid/ascorbic acids derivatives by tensiometric and spectroscopic methods. J. Mol. Liq. 354, 118917. DOI: 10.1016/j.molliq.2022.118917118917.
- Laguerre, M., Hugouvieux, V., Cavusoglu, N., Aubert, F., Lafuma, A., Fulcrand, H., Poncet-Legrand, C. (2014). Probing the micellar solubilisation and inter-micellar exchange of polyphenols using the DPPH free radical. Food Chem. 149, 114–120. DOI: 10.1016/j.foodchem.2013.10.034.
- León-Carmona, J.R., Galano, A. (2012). Free radical scavenging activity of caffeine's metabolites. Int. J. Quantum Chem. 112, 3472–3478. DOI: 10.1002/qua.24084.
- Li, N., Zhang, G., Ge, J., Luchao, J., Jianqiang, Z., Baodong, D., Pei, H. (2011). Adsorption behavior of betaine-type surfactant on quartz sand. Energy Fuels. 25 4430–4437. DOI: 10.1021/ef200616b.
- Liu, Y., Wu, Q., Zhang, J., Yan, W., Mao, X. (2024). Food emulsions stabilized by proteins and emulsifiers: A review of the mechanistic explorations, Int. J. Biol. Macromol. 261, 129795. DOI: 10.1016/j.ijbiomac.2024.129795
- Malik, N. A., Farooq, U. (2022). Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton x-100: a physicochemical study. Phys. Chem. Liq. 60(2), 265–274. DOI: 10.1080/00319104.2021.1949594
- Marković, S., Tošović, J. (2016). Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids, Food Chem. 210, 585–592. DOI: 10.1016/j.foodchem.2016.05.019.
- McClements, D.J., Jafari, S.M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review, Adv. Colloid Interface Sci., 251, 55–79, DOI: 10.1016/j.cis.2017.12.001.
- Nabi, A., Tasneem, S., Jesudason, C. G., Lee, V. S., Zain, S. B. M. (2018). Study of interaction between cationic surfactant (CTAB) and paracetamol by electrical conductivity, tensiometric and spectroscopic methods. J. Mol. Liq. 256, 100–107. DOI: 10.1016/j.molliq.2018.01.185
- Naqvi, A. Z., Panda, M. (2021). Mixed micellization: Improved physicochemical behavior of different amphiphiles in presence of gemini surfactants. J. Mol. Liq. 343, 116876. DOI: 10.1016/j.molliq.2021.116876
- Naseem, B., Sabri, A., Hasan, A., Sakhawat Shah, S. (2004). Interaction of flavonoids within organized molecular assemblies of anionic surfactant. Colloids Surf. B: Biointerfaces. 35, 7–13. DOI: 10.1016/j.colsurfb.2004.01.012.
- Navarra, G., Moschetti, M., Guarrasi,V., Mangione, M.R., Militello, V., Leone, M. (2017). Simultaneous determination of caffeine and chlorogenic acids in green coffee by UV/Vis spectroscopy. J. Chem. 6435086. DOI: 10.1155/2017/6435086.
- Petrucci, R., Zollo, G., Curulli, A., Marrosu, G. (2018). A new insight into the oxidative mechanism of caffeine and related methylxanthines in aprotic medium: May caffeine be really considered as an antioxidant? Biochim. Biophys. Acta - Gen. Subj. 1862, 1781–1789. DOI: 10.1016/j.bbagen.2018.05.011.
- Rojas-González, A., Figueroa-Hernández, C. Y., González-Rios, O., Suárez-Quiroz, M. L., González-Amaro, R. M., Hernández-Estrada, Z. J., Rayas-Duarte, P. (2022). Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review. Molecules, 27(11), 3400. DOI: 10.3390/molecules27113400
- Saha, U., De, R., Das, B. (2023). Interactions between Loaded Drugs and Surfactant Molecules in Micellar Drug Delivery Systems: A Critical Review. J. Mol. Liq., 382, 121906. DOI: 10.1016/j.molliq.2023.121906
- Sellem, L., Srour, B., Javaux, G., Chazelas, E., Chassaing, B., Viennois, E., Debras, C., Druesne-Pecollo, N., Esseddik, Y., Szabo de Edelenyi,F., Arnault, N, Agaësse, C., De Sa, A., Lutchia, R., Huybrechts, I., Scalbert, A., Pierre, F., Coumoul, X., Julia, C., Kesse-Guyot, E., Allès, B., Galan, P., Hercberg, S., Deschasaux-Tanguy, D., Touvier, M. (2024). Food additive emulsifiers and cancer risk: Results from the French prospective NutriNet-Santé cohort. Plos Med. 21(2), e1004338
- Sheng, R., Ding, Q. Y., Ren, Z. H., Li, D. N., Fan, S. C., Quan, X. F., Wang, Y., Yi. M. T., Zhang, Y. X., Cao, Y. X. Wang, H., Wang, J. R., Zhang, Q. H., Qian, Z. B. (2021). Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: Effect of short chain alcohol and its chain length. J. Mol. Liq. 334, 116064. DOI: 10.1016/j.molliq.2021.116064
- Sigurdson, G.T., Robbins, R.J., Collins, T.M, Giusti, M.M. (2016). Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH, Food Chem. 208, 26–34. DOI: 10.1016/j.foodchem.2016.03.109
- Tadros, TF, (2013) Emulsion Formation, Stability, and Rheology. In: Tadros, TF (ed.) Emulsion Formation and Stability (pp. 1–75). Wiley-VCH Verlag GmbH & Co. KGaA., Weinheim DOI: 10.1002/9783527647941.ch1
- Tajik, N., Tajik, M., Mack, I., Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 56, 2215–2244. DOI: 10.1007/s00394-017-1379-1
- Tasneem, S., Nabi, A., Hasan, N., Malik, M. A., Khedher, K. M. (2020). Thermodynamic insights into molecular interactions of sodium lauryl sulfate (SLS) with caffeine and theophylline in aqueous media at different temperatures. J. Mol. Liq., 305, 112776. DOI: 10.1016/j.molliq.2020.112776.
- Thomson, B. M., Campbell, D. M., Cressey, P., Egan, U., Horn, B. (2014). Energy drink consumption and impact on caffeine risk. Food Addit. Contam. Part A. 31(9), 1476–1488. DOI: 10.1080/19440049.2014.940608.
- Tošović, J., Marković, S. (2016). Structural and antioxidative features of chlorogenic acid. Croat. Chem. Acta. 89, 535–541. DOI: 10.5562/cca3026.
- Tošović, J., Marković, S. (2019). Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution – DFT study. Food Chem., 278, 469–475. DOI: 10.1016/j.foodchem.2018.11.070.
- Tošović, J., Marković, S., Dimitrić Marković, J.M., Mojović, M., Milenković, D. (2017). Antioxidative mechanisms in chlorogenic acid. Food Chem. 237, 390–398. DOI: 10.1016/j.foodchem.2017.05.080.
- Viana, R. B., da Silva, A. B., Pimentel, A. S. (2012). Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv. Phys. Chem. 2012. DOI: 10.1155/2012/903272.
- Vieira, A.J.S.C., Gaspar, A.M., Santos, P.M.P. (2020). Mechanisms of potential antioxidant activity of caffeine. Radiat Phys Chem. 174, 108968. DOI: 10.1016/j.radphyschem.2020.108968.
- Weers, J. G., Rathman, J. F., Scheuing, D. R. (1990). Structure/performance relationships in long chain dimethylamine oxide/sodium dodecylsulfate surfactant mixtures. Colloid Polym. Sci., 268, 832–846. DOI: 10.1007/BF0141096.1
- Zhou, Q., Rosen, M. J. (2003). Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19(11), 4555–4562. DOI: 10.1021/la020789m.