Have a personal or library account? Click to login
Effect of Caffeine and Chlorogenic Acid as Food Additives on the Properties of Sodium Dodecyl Sulfate for Prospective Reducing The Amount of Food Emulsifiers Used Cover

Effect of Caffeine and Chlorogenic Acid as Food Additives on the Properties of Sodium Dodecyl Sulfate for Prospective Reducing The Amount of Food Emulsifiers Used

Open Access
|Feb 2025

References

  1. Ai, C. (2023). Recent advances on the emulsifying properties of dietary polysaccharides. eFood, 4(4), e106. DOI: 10.1002/efd2.106
  2. Alfakeer, M., Rub, M. A., Azum, N., Marwani, H. M., Alamry, K. A., Hoque, M. A., Asiri, A. M. (2024). Interaction of antidepressant drug with surfactant mixture in various compositions: effect of electrolyte and urea. Chem. Pap. 78(1), 23–34.
  3. Awwad, S., Issa, R., Alnsour, L., Albals, D., Al-Momani, I. (2021). Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels. Molecules, 26(24), 7502. DOI: 10.3390/molecules26247502
  4. Banipal, T., Kaur, H., Kaur, A. and Banipal, P.K. (2016). Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier. Food Chem. 190, 599–606. DOI: 10.1016/j.foodchem.2015.05.130.
  5. Belay, A., Gholap, A.V. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. Afr. J. Pure Appl. Chem. 3, 234–40. DOI: 10.5897/AJPAC.
  6. Belay, A., Ture, K., Redi, M., Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem. 108, 310–315. DOI: 10.1016/j.foodchem.2007.10.024.
  7. Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76.
  8. Chauhan, S., Chauhan, M. S., Sharma, P., Rana, D. S. (2013). Thermodynamics and micellization of cetyltrimethyl ammonium bromide in the presence of lysozyme. J. Mol. Liq. 187, 1–6. DOI: 10.1016/j.molliq.2013.06.001
  9. Dickinson, E., Ritzoulis, C. (2000). Creaming and rheology of oil-in-water emulsions containing sodium dodecyl sulfate and sodium caseinate. J. Colloid Interface Sci. 224(1), 148–154. DOI: 10.1006/jcis.1999.6682
  10. Food and Drug Administration, (2024). Code of Federal Regulations Title 21 —Food and Drugs. Chapter I —Food and Drug Administration Department of Health and Human Services. Subchapter B —Food for Human Consumption. Part 172 —Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart I —Multipurpose Additives. Sec. 172.822. Sodium lauryl sulfate (up to date as of 2/29/2024). https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-172/subpart-I/section-172.822.
  11. Gayathri, G., D’Souza, J.Q., Sundaram, N.G. (2023). UV induced photocatalytic degradation of caffeine using TiO2–H-beta zeolite composite. Minerals, 13, 465. DOI: 10.3390/min13040465.
  12. Hafizah, M. A. E., Riyadi, A. F., Manaf, A. (2019, April). Particle size reduction of polyaniline assisted by anionic emulsifier of sodium dodecyl sulphate (SDS) through emulsion polymerization. In IOP Conference Series: Materials Science and Engineering (Vol. 515, No. 1, p. 012080). IOP Publishing. DOI: 10.1088/1757-899X/515/1/012080
  13. Hajimehdipoor, H., Shahrestani, R., Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn (RJP), 1, 35–40.
  14. Halmos, E.P., Mack, A., Gibson, P.R. (2019). Review article: emulsifiers in the food supply and implications for gastrointestinal disease, Aliment Pharmacol Ther. 49, 41–50, DOI: 10.1111/apt.15045
  15. Irshad, M., Zafaryab, M., Singh, M., Rizvi, M.M. (2012). Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem. 2012, 157125. DOI: 10.1155/2012/157125.
  16. Jaiswal, P.V, Ijeri, V.S., Srivastava, A.K. (2005). Effect of surfactants on the dissociation constants of ascorbic and maleic acids. Colloids Surf. B: Biointerfaces. 46, 45–51. DOI: 10.1016/j.colsurfb.2005.09.001.
  17. Kabir-ud-Din, Sharma, G., Naqvi, A. Z. (2011). Micellization and interfacial behavior of binary surfactant mixtures based on cationic geminis and nonionic Tweens. Colloids Surf. A: Physicochem. Eng. 385(1–3), 63–71. DOI: 10.1016/j.colsurfa.2011.05.053
  18. Kasiri, N., Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023–1031. DOI: 10.1016/j.ijbiomac.2017.08.112
  19. Kaur, R., Sharma, M., Ji D., Xu M, Agyei D. (2020). Structural features, modification, and functionalities of beta-glucan. Fibers, 8(1), 1. DOI: 10.3390/fib8010001
  20. Khodaparast, S., Sharratt, W. N., Tyagi, G., Dalgliesh, R. M., Robles, E. S., Cabral, J. T. (2021). Pure and mixed aqueous micellar solutions of Sodium Dodecyl sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO): Role of temperature and composition. J. Colloid Interface Sci. 582, 1116–1127. DOI: 10.1016/j.jcis.2020.08.002
  21. Kiewlicz, J., Kwaśniewska, D. (2023). Study of the properties of binary systems: Selected derivatives of B-vitamins-cationic surfactant. J. Mol. Liq. 374, Article 121237. DOI: 10.1016/j.molliq.2023.121237.
  22. Kumar, D., Rub, M. A., Azum, N., Asiri, A. M. (2018). Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini). J. Phys. Org. Chem., 31(1), e3730. DOI: 10.1002/poc.3730
  23. Kwaśniewska, D., Kiewlicz, J. (2022a). Spectroscopic and tensiometric considerations on anionic surfactants (SDS) and ascorbic acid/ascorbates interactions. J. Saudi Chem. Soc. 26, 101532. DOI: 10.1016/j.jscs.2022.101532.
  24. Kwaśniewska, D., Kiewlicz, J. (2022b). Study of interaction between cationic surfactant (CTAB) and ascorbic acid/ascorbic acids derivatives by tensiometric and spectroscopic methods. J. Mol. Liq. 354, 118917. DOI: 10.1016/j.molliq.2022.118917118917.
  25. Laguerre, M., Hugouvieux, V., Cavusoglu, N., Aubert, F., Lafuma, A., Fulcrand, H., Poncet-Legrand, C. (2014). Probing the micellar solubilisation and inter-micellar exchange of polyphenols using the DPPH free radical. Food Chem. 149, 114–120. DOI: 10.1016/j.foodchem.2013.10.034.
  26. León-Carmona, J.R., Galano, A. (2012). Free radical scavenging activity of caffeine's metabolites. Int. J. Quantum Chem. 112, 3472–3478. DOI: 10.1002/qua.24084.
  27. Li, N., Zhang, G., Ge, J., Luchao, J., Jianqiang, Z., Baodong, D., Pei, H. (2011). Adsorption behavior of betaine-type surfactant on quartz sand. Energy Fuels. 25 4430–4437. DOI: 10.1021/ef200616b.
  28. Liu, Y., Wu, Q., Zhang, J., Yan, W., Mao, X. (2024). Food emulsions stabilized by proteins and emulsifiers: A review of the mechanistic explorations, Int. J. Biol. Macromol. 261, 129795. DOI: 10.1016/j.ijbiomac.2024.129795
  29. Malik, N. A., Farooq, U. (2022). Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton x-100: a physicochemical study. Phys. Chem. Liq. 60(2), 265–274. DOI: 10.1080/00319104.2021.1949594
  30. Marković, S., Tošović, J. (2016). Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids, Food Chem. 210, 585–592. DOI: 10.1016/j.foodchem.2016.05.019.
  31. McClements, D.J., Jafari, S.M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review, Adv. Colloid Interface Sci., 251, 55–79, DOI: 10.1016/j.cis.2017.12.001.
  32. Nabi, A., Tasneem, S., Jesudason, C. G., Lee, V. S., Zain, S. B. M. (2018). Study of interaction between cationic surfactant (CTAB) and paracetamol by electrical conductivity, tensiometric and spectroscopic methods. J. Mol. Liq. 256, 100–107. DOI: 10.1016/j.molliq.2018.01.185
  33. Naqvi, A. Z., Panda, M. (2021). Mixed micellization: Improved physicochemical behavior of different amphiphiles in presence of gemini surfactants. J. Mol. Liq. 343, 116876. DOI: 10.1016/j.molliq.2021.116876
  34. Naseem, B., Sabri, A., Hasan, A., Sakhawat Shah, S. (2004). Interaction of flavonoids within organized molecular assemblies of anionic surfactant. Colloids Surf. B: Biointerfaces. 35, 7–13. DOI: 10.1016/j.colsurfb.2004.01.012.
  35. Navarra, G., Moschetti, M., Guarrasi,V., Mangione, M.R., Militello, V., Leone, M. (2017). Simultaneous determination of caffeine and chlorogenic acids in green coffee by UV/Vis spectroscopy. J. Chem. 6435086. DOI: 10.1155/2017/6435086.
  36. Petrucci, R., Zollo, G., Curulli, A., Marrosu, G. (2018). A new insight into the oxidative mechanism of caffeine and related methylxanthines in aprotic medium: May caffeine be really considered as an antioxidant? Biochim. Biophys. Acta - Gen. Subj. 1862, 1781–1789. DOI: 10.1016/j.bbagen.2018.05.011.
  37. Rojas-González, A., Figueroa-Hernández, C. Y., González-Rios, O., Suárez-Quiroz, M. L., González-Amaro, R. M., Hernández-Estrada, Z. J., Rayas-Duarte, P. (2022). Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review. Molecules, 27(11), 3400. DOI: 10.3390/molecules27113400
  38. Saha, U., De, R., Das, B. (2023). Interactions between Loaded Drugs and Surfactant Molecules in Micellar Drug Delivery Systems: A Critical Review. J. Mol. Liq., 382, 121906. DOI: 10.1016/j.molliq.2023.121906
  39. Sellem, L., Srour, B., Javaux, G., Chazelas, E., Chassaing, B., Viennois, E., Debras, C., Druesne-Pecollo, N., Esseddik, Y., Szabo de Edelenyi,F., Arnault, N, Agaësse, C., De Sa, A., Lutchia, R., Huybrechts, I., Scalbert, A., Pierre, F., Coumoul, X., Julia, C., Kesse-Guyot, E., Allès, B., Galan, P., Hercberg, S., Deschasaux-Tanguy, D., Touvier, M. (2024). Food additive emulsifiers and cancer risk: Results from the French prospective NutriNet-Santé cohort. Plos Med. 21(2), e1004338
  40. Sheng, R., Ding, Q. Y., Ren, Z. H., Li, D. N., Fan, S. C., Quan, X. F., Wang, Y., Yi. M. T., Zhang, Y. X., Cao, Y. X. Wang, H., Wang, J. R., Zhang, Q. H., Qian, Z. B. (2021). Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: Effect of short chain alcohol and its chain length. J. Mol. Liq. 334, 116064. DOI: 10.1016/j.molliq.2021.116064
  41. Sigurdson, G.T., Robbins, R.J., Collins, T.M, Giusti, M.M. (2016). Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH, Food Chem. 208, 26–34. DOI: 10.1016/j.foodchem.2016.03.109
  42. Tadros, TF, (2013) Emulsion Formation, Stability, and Rheology. In: Tadros, TF (ed.) Emulsion Formation and Stability (pp. 1–75). Wiley-VCH Verlag GmbH & Co. KGaA., Weinheim DOI: 10.1002/9783527647941.ch1
  43. Tajik, N., Tajik, M., Mack, I., Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr. 56, 2215–2244. DOI: 10.1007/s00394-017-1379-1
  44. Tasneem, S., Nabi, A., Hasan, N., Malik, M. A., Khedher, K. M. (2020). Thermodynamic insights into molecular interactions of sodium lauryl sulfate (SLS) with caffeine and theophylline in aqueous media at different temperatures. J. Mol. Liq., 305, 112776. DOI: 10.1016/j.molliq.2020.112776.
  45. Thomson, B. M., Campbell, D. M., Cressey, P., Egan, U., Horn, B. (2014). Energy drink consumption and impact on caffeine risk. Food Addit. Contam. Part A. 31(9), 1476–1488. DOI: 10.1080/19440049.2014.940608.
  46. Tošović, J., Marković, S. (2016). Structural and antioxidative features of chlorogenic acid. Croat. Chem. Acta. 89, 535–541. DOI: 10.5562/cca3026.
  47. Tošović, J., Marković, S. (2019). Antioxidative activity of chlorogenic acid relative to trolox in aqueous solution – DFT study. Food Chem., 278, 469–475. DOI: 10.1016/j.foodchem.2018.11.070.
  48. Tošović, J., Marković, S., Dimitrić Marković, J.M., Mojović, M., Milenković, D. (2017). Antioxidative mechanisms in chlorogenic acid. Food Chem. 237, 390–398. DOI: 10.1016/j.foodchem.2017.05.080.
  49. Viana, R. B., da Silva, A. B., Pimentel, A. S. (2012). Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv. Phys. Chem. 2012. DOI: 10.1155/2012/903272.
  50. Vieira, A.J.S.C., Gaspar, A.M., Santos, P.M.P. (2020). Mechanisms of potential antioxidant activity of caffeine. Radiat Phys Chem. 174, 108968. DOI: 10.1016/j.radphyschem.2020.108968.
  51. Weers, J. G., Rathman, J. F., Scheuing, D. R. (1990). Structure/performance relationships in long chain dimethylamine oxide/sodium dodecylsulfate surfactant mixtures. Colloid Polym. Sci., 268, 832–846. DOI: 10.1007/BF0141096.1
  52. Zhou, Q., Rosen, M. J. (2003). Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19(11), 4555–4562. DOI: 10.1021/la020789m.
DOI: https://doi.org/10.2478/aucft-2024-0013 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 159 - 170
Submitted on: Jul 10, 2024
Accepted on: Oct 21, 2024
Published on: Feb 15, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Dobrawa Kwaśniewska, Justyna Kiewlicz, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.