Have a personal or library account? Click to login
Determination of the Correlation Between Image Parameters and Chemical Properties of Red Sweet Bell Pepper During Fermentation Cover

Determination of the Correlation Between Image Parameters and Chemical Properties of Red Sweet Bell Pepper During Fermentation

Open Access
|Feb 2025

References

  1. Abou-Zaid, F.O.F. (2015). Pickled Cucumber Production for Hypertension Patients. International Journal of Advanced Research, 3, 12, 1490 – 1497.
  2. Armi, L.; & Fekri-Ershad, S. (2019). Texture image analysis and texture classification methods—A review. Int. Online J. Image Process. Pattern Recogn., 2, 1–29.
  3. Bell, V., Ferrão, J., Pimentel, L., Pintado, M., & Fernandes, T. (2018). One Health, Fermented Foods, and Gut Microbiota. Foods, 7, 195. DOI: 10.3390/foods7120195.
  4. Blanco-Ríos, A.K., Medina-Juarez, L.A., González-Aguilar, G.A., & Gamez-Meza, N. (2013). Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. J. Mex. Chem. Soc., 57, 137–143. DOI: 10.29356/jmcs.v57i2.226.
  5. Bohoyo-Gil, D., Dominguez-Valhondo, D., García-Parra, J.J., & González-Gómez, D. (2012). UHPLC as a suitable methodology for the analysis of carotenoids in food matrix. European Food Research and Technology, 235, 1055–1061. DOI: 10.1007/s00217-012-1838-0.
  6. Breidt, F., Pérez-Díaz, I., McFeeters, M.F., & Lee, C.H. (2013). Fermented vegetables. In: Food microbiology: fundamentals and frontiers. Waszyngton: ASM Press.
  7. Buczkowska, H., & Łabuda, H., (2015). Utility and biological value of hot pepper fruits from a single harvest. Acta Sci. Pol. Hortorum Cultus, 14(2), 133–143.
  8. Chen, M., Wang, X., Liu, Y., Li, P., Wang, R., & Jiang, L. (2022). Discoloration Investigations of Yellow Lantern Pepper Sauce (Capsicum chinense Jacq.) Fermented by Lactobacillus plantarum: Effect of Carotenoids and Physiochemical Indices. Molecules, 27, 7139. DOI: 10.3390/molecules27207139.
  9. da Silveira Agostini-Costa, T., da Silva Gomes, I., de Melo, L.A.M.P., Reifschneider, F.J.B., & da Costa Ribeiro, C.S. (2017). Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. Journal of Food Composition and Analysis, 57, 73–79. DOI: 10.1111/j.1750-3841.2010.01795.x.
  10. de Souza, E.L., de Oliveira, K., & de Oliveira, M.E. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Curr. Opin. Food Sci., 49, 100981. DOI: 10.1016/j.cofs.2022.100981.
  11. Di Cagno, R., Surico, R.F., Minervini, G., De Angelis, M., Rizzello, C.G., & Gobbetti, M. (2009). Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature. Int. J. Food Microbiol., 130, 108–116. DOI: 10.1016/j.ijfoodmicro.2009.01.019.
  12. Franco, W., Perez-Diaz, I., Johanningsmeier, S., & McFeeters, R. (2012). Characteristic of spoilage-associated secondary cucumber fermentation. Applied and Environmental Microbiology, 78(4), 1273–1284. DOI: 10.1128/AEM.06605-11.
  13. Gorzelany, J., Migut, D., & Matłok, N. (2015). Analiza właściwości mechanicznych świeżych owoców wybranych odmian ogórków gruntowych i poddanych procesowi kiszenia. Inżynieria Przetwórstwa Spożywczego, 3/4(15), 16–21.
  14. Grzelakowska, A., Cieślewicz, J., & Łudzińska, M. (2013). The dynamics of vitamin C content in fresh and processed cucumber (Cucumis sativus L.). Chem. Didact. Ecol. Metrol., 18, 97–102. DOI:
  15. Herbig, A.L., & Renard, M.G.C. (2017). Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chem., 220, 444–451. DOI: 10.1016/j.foodchem.2016.10.012.
  16. Holzapfel, W. H., & Schillinger, U. (2002). Introduction to pre- and probiotics. Food Res. Int., 35, 109–116. DOI: 10.1016/S0963-9969(01)00171-5.
  17. Hu, X., Saravanakumar, K., Jin, T., & Wang M.H. (2021). Effects of yellow and red bell pepper (paprika) extracts on pathogenic microorganisms, cancerous cells and inhibition of survivin. J Food Sci Technol, 58, 1499–1510. DOI: 10.1007/s13197-020-04663-4.
  18. IFU. Determination of L-Ascorbic Acid in Fruit Juices by HPLC. Method 17b; International Fruit and Vegetable Juice Association. 2005. Available online: https://ifu-fruitjuice.com/page/ListofIFUMethods (accessed on 7 October 2024).
  19. Janiszewska-Turak, E., Tracz, K., Bielińska, P., Rybak, K., Pobiega, K., Gniewosz, M., Woźniak, Ł., & Gramza-Michałowska, A. (2022a). The Impact of the Fermentation Method on the Pigment Content in Pickled Beetroot and Red Bell Pepper Juices and Freeze-Dried Powders. Appl. Sci., 12, 5766. DOI: 10.3390/app12125766.
  20. Janiszewska-Turak, E., Witrowa-Rajchert, D., Rybak, K., Rolof, J., Pobiega, K., Woźniak, Ł., & Gramza-Michałowska, A. (2022b). The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules, 27, 8637. DOI: 10.3390/molecules27238637.
  21. Karwowska, K., & Kaczmarczyk, D. (2023). Rola i znaczenie produktów fermentowanych w diecie. Medycyna Ogólna i Nauki o Zdrowiu, 29, 2, 79–88. DOI: 10.26444/monz/166088.
  22. Kaur, R., Kaur, K., Wagh, R.V., Kaur, A., & Aggarwal, P. (2020). Red bell pepper (Capsicum annuum L.): Optimization of drying conditions and preparation of functional bread. J. Food Sci., 85, 2340–2349. DOI: 10.1111/1750-3841.15317.
  23. Kiczorowski, P., Kiczorowska, B., Samolińska, W., Szmigielsnki, M., & Winiarska-Mieczan, A. (2022). Effect of fermentation of chosen vegetables on the nutrient, mineral, and biocomponent profile in human and animal nutrition. Scientific Reports, 12(1), 13422. DOI: 10.1038/s41598-022-17782-z.
  24. Kim, J.-H., Block, D.E., Shoemaker, S.P., & Mills, D.A. (2010). Conversion of rice straw to bio-based chemicals: An integrated process using Lactobacillus brevis. Appl. Microbiol. Biotechnol., 86, 1375–1385. DOI: 10.1007/s00253-009-2407-8.
  25. Li, Q.H., Yang, S.P., Yu, Y.N., Khan, A., Feng, P.L., Ali, M., Shao, D.K., Wang, Y.Y., Zhang, R.X., & Gai, W.X. (2021). Comprehensive transcriptome-based characterization of stages of Capsicum. Sci. Hortic., 288, 110311. DOI: 10.1016/j.scienta.2021.110311.
  26. Liu, Y., Zhang, C.Y., Cui, B.Z., Zhou, Q., Wang, Y.Q., Chen, X.W., Fu, H.F., & Wang, Y.Y. (2020). Effect of emulsifier composition on oil-in-water nano-emulsions: Fabrication, structural characterization and delivery of zeaxanthin dipalmitate from Lycium barbarum L. LWT-Food Sci. Technol., 161, 113353. DOI: 10.1016/j.lwt.2022.113353.
  27. Liu, C. H., Liu, W., Chen, W., Yang, J. B., & Zheng, L. (2015). Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chem., 173, 482–488. DOI: 10.1016/j.foodchem.2014.10.052.
  28. Migut, D., Gorzelany, J., & Wołowiec, A. (2018). Ocena wybranych właściwości chemicznych świeżych i kiszonych ogórków gruntowych. Inżynieria Przetwórstwa Spożywczego, 3/4(27), 33–39.
  29. Mapelli-Brahm, P., Barba, F.J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A.S., Lorenzo, J.M., Montesano, D., & Meléndez-Martínez, A.J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci. Technol., 99, 389–401. DOI: 10.1016/j.tifs.2020.03.013.
  30. Martínez, S., López, M., González-Raurich, M., & Bernardo Alvarez, A. (2005). The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). International Journal of Food Sciences and Nutrition, 56(1), 45–51. DOI: 10.1080/09637480500081936.
  31. Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2022). Quality Prediction of Different Pineapple (Ananas comosus) Varieties during Storage Using Infrared Thermal Imaging Technique. Food Control, 138, 108988. DOI: 10.1016/j.foodcont.2022.108988.
  32. Montet, D., Ray, R.C., & Zakhia-Rozis, N. (2014). Lactic acid fermentation of vegetables and fruits. In Microorganisms and Fermentation of Traditional Foods, 1st ed., Ray, R.C., Montet, D., Eds., CRC Press: Boca Raton, FL, USA, 108–140.
  33. Muscolo, A., Papalia, T., Mallamaci, C., Carabetta, S., Di Sanzo, R., & Russo, M. (2020). Effect of Organic Fertilizers on Selected Health Beneficial Bioactive Compounds and Aroma Profile of Red Topepo Sweet Pepper. Foods, 9, 1323. DOI: 10.3390/foods9091323.
  34. Navarro, J.M., Flores, P., Garrido, C., & Martinez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem., 96, 66–73. DOI: 10.1016/j.foodchem.2005.01.057.
  35. Niakousari, M., Razmjooei, M., Nejadmansouri, M., Barba, F.J., Marszałek, K., & Koubaa, M. Current Developments in Industrial Fermentation Processes. In Fermentation Processes: Emerging and Conventional Technologies; Koubaa, M., Barba, F.J., Roohinejad, S., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 23–96.
  36. Palevitch, D., & Craker, L. E. (1996). Nutritional and Medical Importance of Red Pepper (Capsicum spp.). Journal of Herbs, Spices & Medicinal Plants, 3(2), 55–83. DOI: 10.1300/J044v03n02_08.
  37. PN-EN 12147:2000. Soki owocowe i warzywne - Oznaczanie kwasowości miareczkowej.
  38. Ponder, A., Kulik, K., & Hallmann, E. (2021). Occurrence and determination of carotenoids and polyphenols in different paprika powders from organic and conventional production. Molecules, 26, 2980. DOI: 10.3390/molecules26102980.
  39. Ratajczak, K., Piotrowska-Cyplik, A., & Myszka, K. (2017). Badania metapopulacyjne wybranych fermentowanych produktów pochodzenia roślinnego. Postępy Nauki i Technologii Przemysłu Rolno-Spożywczego, 72(3), 26–38.
  40. Rohini, N., & Lakshmanan, V. (2017). Evaluation studies of hot pepper hybrids (Capsicum annuum L.) for yield and quality characters. Electron. J. Plant Breed., 8(2), 643–651. DOI: 10.5958/0975-928X.2017.00098.9.
  41. Ropelewska, E.; Sabanci, K.; Aslan, M.F. (2022). The Changes in Bell Pepper Flesh as a Result of Lacto-Fermentation Evaluated Using Image Features and Machine Learning. Foods, 11, 2956. DOI: 10.3390/foods11192956.
  42. Ropelewska, E.; Sabanci, K.; Aslan, M.F. (2023). The effect of lacto-fermentation over time on the changes in zucchini flesh quality assessed using machine learning models based on image textures. J. Food Process Eng., 46, e14496. DOI: 10.1111/jfpe.14496.
  43. Ropelewska, E.; Szwejda-Grzybowska, J.; Wrzodak, A.; Mieszczakowska-Frąc, M. (2024). Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation. Agriculture, 14, 1855. DOI: 10.3390/agriculture14111855.
  44. Rungpichayapichet, P., Nagle, M., Yuwanbun, P., Khuwijitjaru, P., Mahayothee, B., & Müller, J. (2017). Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosyst. Eng. 159, 109–120. DOI: 10.1016/j.biosystemseng.2017.04.006.
  45. Rybak, K., Wiktor, A., Witrowa-Rajchert, D., Parniakov, O., & Nowacka, M. (2020). The Effect of Traditional and Non-Thermal Treatments on the Bioactive Compounds and Sugars Content of Red Bell Pepper. Molecules, 25, 4287. DOI: 10.3390/molecules25184287.
  46. Ryznar-Luty, A., & Szymański, M. (2020). Ocena wybranych właściwości zalewy solankowej i soku z kiszonych ogórków. Engineering Sciences and Technologies, 36, 160–170.
  47. Santos Pereira, L.F., Barbon, S., Jr., Valous, N.A., & Barbin, D.F. (2018) Predicting the ripening of papaya fruit with digital imaging and random forests. Comput Electron Agric., 145, 76–82. DOI: 10.1016/j.compag.2017.12.029.
  48. Saranraj, P., Naidu, M.A., & Sivasakthivelan, P. (2013). Lactic acid bacteria and its antimicrobial properties: a review. Int. J. Pharm. Biol. Arch., 4, 1124–1133. DOI: 10.3390/foods10123131.
  49. Siddiqui, S.A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H.A., Toppi, V., Musa, L., DiGiacinto, G., Bahmid, N.A., Mehdizadeh, M., & Castro-Muñoz, R. (2023) An overview of fermentation in the food industry-looking back from a new perspective. Bioresources and Bioprocessing, 10, 85 (2–47). DOI: 10.1186/s40643-023-00702-y.
  50. Strzelecki, M., Szczypiński, P., Materka, A., & Klepaczko, A. (2013). A software tool for automatic classification and segmentation of 2D/3D medical images. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 702, 137–140. 10.1016/j.nima.2012.09.006.
  51. Szczypiński, P.M., Strzelecki, M., & Materka, A. (2007). Mazda-a software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007, pp. 245–249. DOI: 10.1109/ISITC.2007.15.
  52. Szczypiński, P.M., Strzelecki, M., Materka, A., & Klepaczko, A. (2009). MaZda—A software package for image texture analysis. Computer Methods and Programs in Biomedicine, 94, 66–76. DOI: 10.1016/j.cmpb.2008.08.005.
  53. Voidarau Ch., Antoniadau M., Rozos G., Tzora A., Skoufos I., et al. (2021). Fermentative foods: Microbiology, Potential Human Health Benefits and Public Health Issues. Foods, 10, 69, 2–27. DOI: 10.3390/foods10010069.
  54. Waszkiewicz-Robak, B., Kulik, K., & Biller, E. (2020). The stability of vitamin C in model salads prepared from tomatoes with fresh cucumber. Postępy Techniki Przetwórstwa Spożywczego, 1, 58–62.
  55. Wawrzyniak, A., Krotki, M., & Stoparczyk, B. (2011). Właściwości antyoksydacyjne owoców i warzyw. Medycyna Rodzinna, 1, 19–23.
  56. Zaręba, D., & Ziarno, M. (2011). Alternatywne probiotyczne napoje warzywne i owocowe. Bromatologia i Chemia Toksykologiczna, XLIV(2), 160–168.
DOI: https://doi.org/10.2478/aucft-2024-0012 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 145 - 158
Submitted on: Jul 25, 2024
Accepted on: Nov 25, 2024
Published on: Feb 15, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ewa Ropelewska, Justyna Szwejda-Grzybowska, Anna Wrzodak, Monika Mieszczakowska-Frąc, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.