Have a personal or library account? Click to login
Content of Polyphenolic Compounds and Biological Activity of Berries, Leaves and Flowers of Crataegus L. Cover

Content of Polyphenolic Compounds and Biological Activity of Berries, Leaves and Flowers of Crataegus L.

Open Access
|Sep 2023

References

  1. Abubakar, A., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy And Bioallied Sciences, 12(1), 1. https://doi.org/10.4103/jpbs.JPBS_175_19
  2. Alirezalu, A., Ahmadi, N., Salehi, P., Sonboli, A., Alirezalu, K., Mousavi Khaneghah, A., Barba, F. J., Munekata, P. E. S., & Lorenzo, J. M. (2020). Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods, 9(4), 436. https://doi.org/10.3390/foods9040436
  3. Alirezalu, A., Salehi, P., Ahmadi, N., Sonboli, A., Aceto, S., Hatami Maleki, H., & Ayyari, M. (2018). Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. International Journal of Food Properties, 21(1), 452–470. https://doi.org/10.1080/10942912.2018.1446146
  4. Apak, R., Güçlü, K., Özyürek, M., Esin Karademir, S., & Erçağ, E. (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 57(5–6), 292–304. https://doi.org/10.1080/09637480600798132
  5. Bahri-Sahl, R., Ammar, S., Fredj, R. B., Saguem, S., Grec, S., Trotin, F., & Skhiri, F. H. (2009). Polyphenol Contents and Antioxidant Activities of Extracts from Flowers of Two Crataegus azarolus L. Varieties. Pakistan Journal of Biological Sciences, 12(9), 660–668. https://doi.org/10.3923/pjbs.2009.660.668
  6. Bardakci, H., Celep, E., Gözet, T., Kan, Y., & Kırmızıbekmez, H. (2019). Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. South African Journal of Botany, 124, 5–13. https://doi.org/10.1016/j.sajb.2019.04.012
  7. Bekbolatova, E., Kukula-Koch, W., Baj, T., Stasiak, N., Ibadullayeva, G., Koch, W., Głowniak, K., Tulemissov, S., Sakipova, Z., & Boylan, F. (2018). Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers. Open Chemistry, 16(1), 415–426. https://doi.org/10.1515/chem-2018-0048
  8. Belkhir, M., Rebai, O., Dhaouadi, K., Congiu, F., Tuberoso, C. I. G., Amri, M., & Fattouch, S. (2013). Comparative Analysis of Tunisian Wild Crataegus azarolus (Yellow Azarole) and Crataegus monogyna (Red Azarole) Leaf, Fruit, and Traditionally Derived Syrup: Phenolic Profiles and Antioxidant and Antimicrobial Activities of the Aqueous-Acetone Extracts. Journal of Agricultural and Food Chemistry, 61(40), 9594–9601. https://doi.org/10.1021/jf402874z
  9. Bignami, C., Paolocci, M., Scossa, A., & Bertazza, G. (2003). Preliminary evaluation of nutritional and medicinal components of Crataegus azarolus fruits. Acta Horticulturae, 597, 95–100. https://doi.org/10.17660/ActaHortic.2003.597.11
  10. Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3). https://doi.org/10.38212/2224-6614.2748
  11. Chelliah, R., & Oh, D.-H. (2022). Screening for Antioxidant Activity: Metal Chelating Assay. In D. Dharumadurai (Ed.), Methods in Actinobacteriology (pp. 457–458). Springer US. https://doi.org/10.1007/978-1-0716-1728-1_63
  12. Çoklar, H., & Akbulut, M. (2016). The change in antioxidant activity, total phenolic content and phenolic profile of Hawthorn (Crataegus orientalis) fruit with maturity. Fruit Research Instıtute Fruit. Science, 3(2), 30–37.
  13. Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). Biomarkers of Oxidative Damage in Human Disease. Clinical Chemistry, 52(4), 601–623. https://doi.org/10.1373/clinchem.2005.061408
  14. Dekić, V., Ristić, N., Dekić, B., & Ristić, M. (2020). Phenolic and flavonoid content and antioxidant evaluation of hawthorn (Crataegus monogyna Jacq.) fruits and leaves extracts. The University Thought - Publication in Natural Sciences, 10(1), 20–25. https://doi.org/10.5937/univtho10-25574
  15. Denev, P., Kratchanova, M., Petrova, I., Klisurova, D., Georgiev, Y., Ognyanov, M., & Yanakieva, I. (2018). Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. Journal of Chemistry, 2018, 1–11. https://doi.org/10.1155/2018/9574587
  16. Ebrahimzadeh, M. (2009). Antioxidant activity of Crataegus pentaegyna subsp. Elburensis fruits extracts used in traditional medicine in Iran. Paksitan Journal of Molecular Science, 12(5), 413–419.
  17. Edwards, J. E., Brown, P. N., Talent, N., Dickinson, T. A., & Shipley, P. R. (2012). A review of the chemistry of the genus Crataegus. Phytochemistry, 79, 5–26. https://doi.org/10.1016/j.phytochem.2012.04.006
  18. Forman, H. J., Davies, K. J. A., & Ursini, F. (2014). How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 66, 24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045
  19. Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689–709. https://doi.org/10.1038/s41573-021-00233-1
  20. Froehlicher, T., Hennebelle, T., Martin-Nizard, F., Cleenewerck, P., Hilbert, J.-L., Trotin, F., & Grec, S. (2009). Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115(3), 897–903. https://doi.org/10.1016/j.foodchem.2009.01.004
  21. Furey, A., Tassell, M., Kingston, R., Gilroy, D., & Lehane, M. (2010). Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacognosy Reviews, 4(7), 32. https://doi.org/10.4103/0973-7847.65324
  22. Gao, X., Ohlander, M., Jeppsson, N., Björk, L., & Trajkovski, V. (2000). Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. Journal of Agricultural and Food Chemistry, 48(5), 1485–1490. https://doi.org/10.1021/jf991072g
  23. Gao, Z., Jia, Y.-N., Cui, T.-Y., Han, Z., Qin, A.-X., Kang, X.-H., Pan, Y.-L., & Cui, T. (2013). Quantification of Ten Polyphenols in the Leaves of Chinese Hawthorn (Crataegus pinnatifida) by HPLC. Asian Journal of Chemistry, 25(18), 10344–10348. https://doi.org/10.14233/ajchem.2013.15455
  24. González-Jiménez, F. E., Salazar-Montoya, J. A., Calva-Calva, G., & Ramos-Ramírez, E. G. (2018). Phytochemical Characterization, In Vitro Antioxidant Activity, and Quantitative Analysis by Micellar Electrokinetic Chromatography of Hawthorn (Crataegus pubescens) Fruit. Journal of Food Quality, 2018, 1–11. https://doi.org/10.1155/2018/2154893
  25. Goto, T., Obara, M., Aoki, S., Okazawa, K., Konisho, K., Osakabe, N., & Shoji, T. (2021). Evaluation of Polyphenolic Content and Potential Antioxidant Activity of Japanese Cultivars of Peaches, Prunes, and Plums Based on Reversed- and Normal-Phase HPLC and Principal Component Analyses. ACS Food Science & Technology, 1(10), 2019–2029. https://doi.org/10.1021/acsfoodscitech.1c00357
  26. Gu, L., House, S. E., Wu, X., Ou, B., & Prior, R. L. (2006). Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. Journal of Agricultural and Food Chemistry, 54(11), 4057–4061. https://doi.org/10.1021/jf060360r
  27. Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., & Prior, R. L. (2003). Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LCMS/MS and Thiolytic Degradation. Journal of Agricultural and Food Chemistry, 51(25), 7513–7521. https://doi.org/10.1021/jf034815d
  28. Jaiswal, R., & Kuhnert, N. (2011). Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry. Food & Function, 2(1), 63–71. https://doi.org/10.1039/C0FO00125B
  29. Kallassy, H., Fayyad-Kazan, M., Makki, R., EL-Makhour, Y., Hamade, E., Rammal, H., Leger, D. Y., Sol, V., Fayyad-Kazan, H., Liagre, B., & Badran, B. (2017). Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L. Medical Science Monitor Basic Research, 23, 270–284. https://doi.org/10.12659/MSMBR.905066
  30. Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., Bolling, S., & Chang, S. C. (2003). Antioxidant Capacity of Polyphenolic Extracts from Leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) Subjected to Drought and Cold Stress. Journal of Agricultural and Food Chemistry, 51(14), 3973–3976. https://doi.org/10.1021/jf030096r
  31. Król, D. (2011). Głóg (Crataegus monogyna (L.), Crataegus oxyacantha (L.)) – cenną rośliną leczniczą. Postępy Fitoterapii, 2, 122–126.
  32. Li, T., Fu, S., Huang, X., Zhang, X., Cui, Y., Zhang, Z., Ma, Y., Zhang, X., Yu, Q., Yang, S., & Li, S. (2022). Biological properties and potential application of hawthorn and its major functional components: A review. Journal of Functional Foods, 90, 104988. https://doi.org/10.1016/j.jff.2022.104988
  33. Lin, Y.-T., Lin, H.-R., Yang, C.-S., Liaw, C.-C., Sung, P.-J., Kuo, Y.-H., Cheng, M.-J., & Chen, J.-J. (2022). Antioxidant and Anti-α-Glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Fruits of Crataegus pinnatifida. Antioxidants, 11(2), 320. https://doi.org/10.3390/antiox11020320
  34. Liu, P., Kallio, H., Lü, D., Zhou, C., & Yang, B. (2011). Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography–electrospray ionisation mass spectrometry. Food Chemistry, 127(3), 1370–1377. https://doi.org/10.1016/j.foodchem.2011.01.103
  35. Liu, P., Kallio, H., & Yang, B. (2011). Phenolic Compounds in Hawthorn (Crataegus grayana) Fruits and Leaves and Changes during Fruit Ripening. Journal of Agricultural and Food Chemistry, 59(20), 11141–11149. https://doi.org/10.1021/jf202465u
  36. Liu, S., Chang, X., Liu, X., & Shen, Z. (2016). Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry, 212, 87–95. https://doi.org/10.1016/j.foodchem.2016.05.146
  37. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118. https://doi.org/10.4103/0973-7847.70902
  38. Luo, M., Yang, X., Hu, J.-Y., Jiao, J., Mu, F.-S., Song, Z.-Y., Gai, Q.-Y., Qiao, Q., Ruan, X., & Fu, Y.-J. (2016). Antioxidant Properties of Phenolic Compounds in Renewable Parts of Crataegus pinnatifida inferred from Seasonal Variations: Seasonal C. pinnatifida inferred from Seasonal Variations. Journal of Food Science, 81(5), C1102–C1109. https://doi.org/10.1111/1750-3841.13291
  39. Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K., & Mauromoustakos, A. (2010). Subcritical Solvent Extraction of Procyanidins from Dried Red Grape Pomace. Journal of Agricultural and Food Chemistry, 58(7), 4014–4021. https://doi.org/10.1021/jf9028283
  40. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  41. Mraihi, F., Hidalgo, M., de Pascual-Teresa, S., Trabelsi-Ayadi, M., & Chérif, J.-K. (2015). Wild grown red and yellow hawthorn fruits from Tunisia as source of antioxidants. Arabian Journal of Chemistry, 8(4), 570–578. https://doi.org/10.1016/j.arabjc.2014.11.045
  42. Nabavi, S., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., & Nabavi, S. (2015). Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications. Nutrients, 7(9), 7708–7728. https://doi.org/10.3390/nu7095361
  43. Nekkaa, A., Benaissa, A., Mutelet, F., & Canabady-Rochelle, L. (2021). Rhamnus alaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants, 10(2), 300. https://doi.org/10.3390/antiox10020300
  44. Orhan, I., Özçelik, B., Kartal, M., Özdeveci, B., & Duman, H. (2007). HPLC Quantification of Vitexine-2″-O-rhamnoside and Hyperoside in Three Crataegus Species and Their Antimicrobial and Antiviral Activities. Chromatographia, 66(S1), 153–157. https://doi.org/10.1365/s10337-007-0283-x
  45. Oszmiański, J., & Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809–813. https://doi.org/10.1007/s00217-005-0002-5
  46. Özyürek, M., Bener, M., Güçlü, K., Dönmez, A., & Pırıldar, S. (2012). Evaluation of Antioxidant Activity of Crataegus Species Collected from Different Regions of Turkey. Records of Natural Products, 6(3), 263–277.
  47. Pandey, K. B., & Rizvi, S. I. (2009). Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
  48. Patel, S. (2017). Rose hip as an underutilized functional food: Evidence-based review. Trends in Food Science & Technology, 63, 29–38. https://doi.org/10.1016/j.tifs.2017.03.001
  49. Plazonić, A., Bucar, F., Maleš, Ž., Mornar, A., Nigović, B., & Kujundžić, N. (2009). Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L.), Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. Molecules, 14(7), 2466–2490. https://doi.org/10.3390/molecules14072466
  50. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  51. Rigelsky, J. M., & Sweet, B. V. (2002). Hawthorn: Pharmacology and therapeutic uses. American Journal of Health-System Pharmacy, 59(5), 417–422. https://doi.org/10.1093/ajhp/59.5.417
  52. Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37(5), 837–841. https://doi.org/10.1016/0006-2952(88)90169-4
  53. Sagaradze, V. A., Babaeva, E. Yu., Kalenikova, E. I., Trusov, N. A., & Peshchanskaya, E. V. (2021). Quantitative Anatomical Characteristics of the Leaf Blades of the Several Species of Crataegus L. Drug Development & Registration, 10(4), 138–146. https://doi.org/10.33380/2305-2066-2021-10-4-138-146
  54. Simirgiotis, M. (2013). Antioxidant Capacity and HPLC-DAD-MS Profiling of Chilean Peumo (Cryptocarya alba) Fruits and Comparison with German Peumo (Crataegus monogyna) from Southern Chile. Molecules, 18(2), 2061–2080. https://doi.org/10.3390/molecules18022061
  55. Song, J., Li, X., Zeng, L., Liu, H., & Xie, M. (2011). Determination of cyanidin-3-glucoside (red kernel food colour) in beverages by high performance liquid chromatography and a study of its degradation by quadruple time-of-flight mass spectrometry. Food Additives & Contaminants: Part A, 1–12. https://doi.org/10.1080/19440049.2011.610035
  56. Trexler, S. E., Nguyen, E., Gromek, S. M., Balunas, M. J., & Baker, W. L. (2018). Electrocardiographic effects of hawthorn (Crataegus oxyacantha) in healthy volunteers: A randomized controlled trial: Electrocardiographic effects of hawthorn. Phytotherapy Research, 32(8), 1642–1646. https://doi.org/10.1002/ptr.6094
  57. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
  58. Venskutonis, P. R. (2018). Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. Journal of Food Bioactives, 4. https://doi.org/10.31665/JFB.2018.4163
  59. Wen, L., Guo, X., Liu, R. H., You, L., Abbasi, A. M., & Fu, X. (2015). Phenolic contents and cellular antioxidant activity of Chinese hawthorn “Crataegus pinnatifida”. Food Chemistry, 186, 54–62. https://doi.org/10.1016/j.foodchem.2015.03.017
  60. Wyspiańska, D., Kucharska, A. Z., Sokół-Łętowska, A., & Kolniak-Ostek, J. (2017). Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn (Crataegus monogyna Jacq.) procyanidins microcapsules with inulin and maltodextrin: Properties of hawthorn procyanidins microcapsules. Journal of the Science of Food and Agriculture, 97(2), 669–678. https://doi.org/10.1002/jsfa.7787
  61. Yang, B., & Liu, P. (2012). Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. Journal of the Science of Food and Agriculture, 92(8), 1578–1590. https://doi.org/10.1002/jsfa.5671
  62. Żurek, N., Kapusta, I., & Cebulak, T. (2020). Impact of extraction conditions on antioxidant potential of extracts of flowers, leaves and fruits of Hawthorn (Crataegus × macrocarpa l.). 27(2), 130–141.
  63. Żurek, N., Karatsai, O., Rędowicz, M. J., & Kapusta, I. T. (2021). Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules, 26(9), 2656. https://doi.org/10.3390/molecules26092656
  64. Żurek, N., Pycia, K., Pawłowska, A., & Kapusta, I. T. (2022). Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants, 11(10), 2046. https://doi.org/10.3390/antiox11102046
DOI: https://doi.org/10.2478/aucft-2023-0004 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 35 - 52
Submitted on: Mar 1, 2023
Accepted on: Apr 20, 2023
Published on: Sep 6, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Natalia Żurek, Ireneusz Kapsuta, Tomasz Cebulak, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.