Have a personal or library account? Click to login
Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland Cover

Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland

Open Access
|Dec 2021

References

  1. 1. Apak, R., Guclu, K., Karademir, S.E. & Ozyurek, M. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52, 7970-7981. DOI: 10.1021/jf048741x10.1021/jf048741x
  2. 2. Araújo, S., Matos, C., Correia, E. & Antunes, M.C. (2019). Evaluation of phytochemicals content, antioxidant activity and mineral composition of selected edible flowers. Qual. Assur. Saf. Crop. Foods.11(5), 471-478. DOI: 10.3920/QAS2018.149710.3920/QAS2018.1497
  3. 3. Barnum, D.W. (1997). Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Anal. Chim. Acta. 89, 157-166. DOI: 10.1016/S0003-2670(01)83081-610.1016/S0003-2670(01)83081-6
  4. 4. Benzie, J., Iris, F.F. & Strain, J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299, 15-27. DOI: 10.1016/S0076-6879(99)99005-510.1016/S0076-6879(99)99005-5
  5. 5. Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. DOI: 10.1038/1811199a010.1038/1811199a0
  6. 6. Butnariu, M. & Coradini, C.Z. (2012). Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem. Cent. J. 6, 35, 2–7. DOI: 10.1186/1752-153X-6-3510.1186/1752-153X-6-35337995222540963
  7. 7. Chen, G.L., Chen, S.G., Xie, Y.Q., Chen, F., Zhao, Y.Y., Luo, C.X. & Gao, Y.Q. (2015). Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 17, 243–259. DOI: 10.1016/j.jff.2015.05.02810.1016/j.jff.2015.05.028
  8. 8. Chen, Q., Xu, B., Huang, W., Amrouche, A.T., Maurizio, B., Simal-Gandara, J., Tundis, R., Xiao, J., Zou, L. & Lu, B. (2020). Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 106, 30–47.10.1016/j.tifs.2020.09.023
  9. 9. Dudek, M., Matławska, I. & Szkudlarek, M. (2006). Phenolic acids in the flowers of Althaea rosea var. nigra. Acta Pol. Pharm. 63(3), 207-21.
  10. 10. Fernandes, L., Casal, S., Pereira, J.A., Saraivac, J.A. & Ramalhosa, A. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 60, 38–50. DOI: 10.1016/j.jfca.2017.03.01710.1016/j.jfca.2017.03.017
  11. 11. Frum A. (2017). HPLC determination of polyphenols from Calendula Officinalis L. flowers. Acta Universitatis Cibiniensis Series E: Food Technology 97, XXI (2), 97-101. DOI: 10.1515/aucft-2017-002010.1515/aucft-2017-0020
  12. 12. Grzeszczuk, M., Wesołowska, A., Jadczak, D. & Jakubowska, B. (2011). Nutritional value of chive edible flowers. Acta Sci. Pol. Hortorum Cultus 10(2), 85-94.
  13. 13. Halliwell, B., Gutteridge, J. & Aruoma, O. (1987). The desoxyribose method: a simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215-219. DOI: 10.1016/0003-2697(87)90222-310.1016/0003-2697(87)90222-3
  14. 14. Husti, A., Cantor, M., Buta, E. & Hort D. (2013). Current Trends of Using Ornamental Plants in Culinary Arts. ProEnvironment 6, 52-58.
  15. 15. Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N. & Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods 3, 88-99. DOI: 10.1016/j.jff.2011.03.00210.1016/j.jff.2011.03.002
  16. 16. Kucekova, Z., Mlcek, J., Humpolicek, P., Rop, O., Valasek, P. & Saha, P. (2011). Phenolic Compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and Their Antiproliferative Effects. Molecules 16, 9207-9217. DOI: 10.3390/molecules 1611920710.3390/molecules14020738
  17. 17. Kucekova, Z., Mlcek, J., Humpolicek, P. & Rop, O. (2013). Edible flowers - antioxidant activity and impact on cell viability. Cent. Eur. J. Biol. 8(10), 1023-1031. DOI: 10.2478/s11535-013-0212-y10.2478/s11535-013-0212-y
  18. 18. Kumari, P., Ujala & Bhargava, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. DOI: 10.1016/j.jff.2021.10437510.1016/j.jff.2021.104375
  19. 19. Li, C.D.H., Wang, L., Shu, Q., Zheng, Y., Xu, Y., Zhang, J., Zhang, J., Yang, R. & Ge, Y. (2009). Flavonoid composition and antioxidant activity of tree peony (Paeonia Section Moutan) yellow flowers. J. Agric. Food Chem. 57, 18, 8496–8503. DOI: 10.1021/jf902103b10.1021/jf902103b
  20. 20. Mlcek, J. & Rop, O. (2011). Fresh edible flowers of ornamental plants - A new source of nutraceutical foods. Trends Food Sci. Technol. 22, 561-569. DOI: 10.1016/j.tifs.2011. 04.00610.1016/j.tifs.2011.04.006
  21. 21. Nalewajko-Sieliwoniuk, E., Pliszko, A., Nazaruk, J., Barszczewsk, E. & Pukszta, W. (2019). Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia 74, 1569–1577. DOI: 10.2478/s11756-019-00332-w10.2478/s11756-019-00332-w
  22. 22. Nardini, M. & Ghiselli, A. (2004). Analytical, nutritional and clinical methods. Determination of free and bound phenolic acids in beer. Food Chem. 84, 137-143. DOI: 10.1016/S0308-8146(03)00257-710.1016/S0308-8146(03)00257-7
  23. 23. Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B. & Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16(1), 805-822. DOI: 10.3390/ijms16010805.10.3390/ijms16010805430727625561232
  24. 24. Nowicka, P. & Wojdyło, A. (2019). Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants 8, 308. DOI: 10.3390/antiox 808030810.3390/antiox8080308
  25. 25. Piresa, T.C.S.P., Barros, L., Santos-Buelga, C. & Ferreira, I.C.F.R. (2019). Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 93, 244-258. DOI: 10.1016/j.tifs.2019.09.02010.1016/j.tifs.2019.09.020
  26. 26. Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337-341. DOI: 10.1006/abio. 1999.401910.1006/abio.1999.4019
  27. 27. Rop, O., Mlcek, J., Jurikova T., Neugebauerova, J. & Vabkova, J. (2012). Edible Flowers - A New Promising Source of Mineral Elements in Human Nutrition. Molecules 17, 6672-6683. DOI: 10.3390/molecules1706667210.3390/molecules17066672626829222728361
  28. 28. Singleton, V.A. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitricult. 16, 144-158.10.5344/ajev.1965.16.3.144
  29. 29. Skrajda-Brdak, M., Dąbrowski, G. & Konopka, I. (2020). Edible flowers, a source of valuable phytonutrients and their pro-healthy effects – A review. Trends in Food Sci. Technol. 103, 179-199. DOI: 10.1016/j.tifs.2020.06.01610.1016/j.tifs.2020.06.016
  30. 30. Stanciu, G., Rotariu, R., Popescu, A. & Tomescu, A. (2019). Phenolic and Mineral Composition of Wild Chicory Grown in Romania. Rev. Chim. 70(4), 1173-1177.10.37358/RC.19.4.7087
  31. 31. Utvineantu A., & Vamanu, E. (2020). In vitro Antioxidant Potential and Anti-Escherichia coli Effect of Crude Extracts from Common Edible Yellow Flower Petals. Algerian J. Nat. Prod. 8(2), 767-773.
  32. 32. Wojciak-Kosior, M., Matysik, G. & Soczewinski, E. (2003). Investigations of phenolic acids occurring in plant components of Naran N by HPLC and HPTLC densitometric methods. Herba Polonica 49, 194-201.
  33. 33. Xiong, L., Yang, J., Jiang, Y., Lu, B., Hu, Y., Zhou, F., Mao, S. & Shen, C. (2014). Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 79(4), 517-525. DOI: 10.1111/1750-3841.1240410.1111/1750-3841.1240424621197
  34. 34. Zheng, J., Meenu, M. & Xu, B. (2019). A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 172, 268-277. DOI: 10.1016/j.jpba.2019.05.00710.1016/j.jpba.2019.05.00731078063
  35. 35. Żurek, N., Kapusta, I. & Cebulak T. (2020). Impact of extraction conditions on antioxidant potential of extracts of flowers, leaves and fruits of hawthorn (Crataegus × Macrocarpa l.). Food. Science. Technology. Quality. 27(2), 130-141. DOI: 10.15193/zntj/2020/123/34010.15193/zntj/2020/123/340
DOI: https://doi.org/10.2478/aucft-2021-0017 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 185 - 200
Submitted on: Jul 15, 2021
Accepted on: Oct 28, 2021
Published on: Dec 30, 2021
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Robert Socha, Justyna Kałwik, Lesław Juszczak, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.