Have a personal or library account? Click to login
A Comparative Analysis of Different Varietal of Fresh and Dried Figs by In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Activities Cover

A Comparative Analysis of Different Varietal of Fresh and Dried Figs by In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Activities

Open Access
|Jun 2021

References

  1. 1. Bachir Bey, M. & Louaileche, H. (2015). A comparative study of phytochemical profile and in vitro antioxidant activities of dark and light dried fig (Ficus carica L.) varieties. The Journal of Phytopharmacology, 4(1), 41-48.10.31254/phyto.2015.4108
  2. 2. Bachir Bey, M., Richard, G., Meziant, L., Fauconnier, M.L. & Louaileche, H. (2017). Effects of sun- drying on physicochemical characteristics, phenolic composition and in vitro antioxidant activity of dark fig varieties. Journal of Food Processing and Preservation, 41(5), 1-8. https://doi.org/10.1111/jfpp.1316410.1111/jfpp.13164
  3. 3. Bennick, A. (2002). Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, 13(2), 184-196. https://doi.org/10.1177/15441113020130020810.1177/15441113020130020812097360
  4. 4. Bouayed, J., Hoffmann, L. & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. https://doi.org/10.1016/j.foodchem.2011.02.05210.1016/j.foodchem.2011.02.05225214323
  5. 5. Chaalal, M., Ydjedd, S., Harkat, A., Namoune, H. & Kati, D. (2018). Effect of in vitro gastrointestinal digestion on antioxidant potential of three prickly pear variety extracts. Acta Alimentaria, 47(3), 333-339. https://doi.org/10.1556/066.2018.47.3.910.1556/066.2018.47.3.9
  6. 6. Chawla, A., Kaur, R. & Sharma, A.K. (2012). Ficus carica Linn.: A review on its pharmacognostic, phytochemical and pharmacological aspects. International Journal of Pharmaceutical and Phytopharmacological Research, 1(4), 215-232.
  7. 7. Chen, G-L., Chen, S-G., Chen, F., Xie, Y-Q., Han, M-D., Luo, C-X., Zhao, Y-Y. & Gao, Y-Q. (2016). Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. Journal of Functional Foods, 20, 317-331. https://doi.org/10.1016/j.jff.2015.11.00310.1016/j.jff.2015.11.003
  8. 8. De Ancos, B., Ibanez, E., Reglero, G. & Cano, M.P. (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. Journal of Agricultural and Food Chemistry, 48(3), 873-879. https://doi.org/10.1021/jf990747c10.1021/jf990747c10725166
  9. 9. Debib, A., Tir-Touil, A., Mothana, R.A., Meddah, B. & Sonnet, P. (2014). Phenolic Content, Antioxidant and Antimicrobial Activities of Two Fruit Varieties of Algerian Ficus carica L. Journal of Food Biochemistry, 38(2), 207-215. https://doi.org/10.1111/jfbc.1203910.1111/jfbc.12039
  10. 10. Dewanto, V., Wu, X., Adom, K.K. & Liu, R.H. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Journal of Agricultural and Food Chemistry, 50(10), 3010-3014. https://doi.org/10.1021/jf011558910.1021/jf011558911982434
  11. 11. Dupas, C., Marsset-Baglier, A.C., Ordonaud, C.S., Ducept, F.M.G. & Maillard, M-N. (2005). Coffee Antioxidant Properties: Effects of Milk Addition and Processing Conditions. Journal of Food Science, 71(3), S253-S258. https://doi.org/10.1111/j.1365-2621.2006.tb15650.x10.1111/j.1365-2621.2006.tb15650.x
  12. 12. Food and Agricultural Organization of the United Nations, 2014. FAOSTAT database. http://faostat.fao.org (accessed 14 February 2018).
  13. 13. Granese, T., Cardinale, F., Cozzolino, A., Pepe, S., Ombra, M.N., Nazzaro, F., Coppola, R. & Fratianni, F. (2014). Variation of Polyphenols, Anthocyanins and Antioxidant Power in the Strawberry Grape (Vitis labrusca) after Simulated Gastro-Intestinal Transit and Evaluation of in vitro Antimicrobial Activity. Food and Nutrition Sciences, 05(1), 60-65. DOI:10.4236/fns.2014.5100810.4236/fns.2014.51008
  14. 14. Gullon, B., Pintado, M.E., Fernández-López, J., Pérez-Álvarez, J.A. & Viuda-Martos, M. (2015). In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. Journal of Functional Foods, 19, 617-628. https://doi.org/10.1016/j.jff.2015.09.05610.1016/j.jff.2015.09.056
  15. 15. Gümüşay, Ö.A., Borazan, A.A., Ercal, N. & Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162. https://doi.org/10.1016/j.foodchem.2014.09.16210.1016/j.foodchem.2014.09.16225466007
  16. 16. Jolayemi, O.S., Olanrewaju, O.J. & Ogunwale, O. (2020). Exploring in vitro antioxidant activity and physicochemical properties of selected under-exploited tropical fruits. Acta Universitatis Cinbinesis, Series E: Food Technology, 24(2), 165-174. https://doi.org/10.2478/aucft-2020-001510.2478/aucft-2020-0015
  17. 17. Kamiloglu, S. & Capanoglu, E. (2013). Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). International Journal of Food Science Technology, 48(12), 2621-2629. https://doi.org/10.1111/ijfs.1225810.1111/ijfs.12258
  18. 18. Kamiloglu, S., Pasli, A.A., Ozcelik, B., Van Camp, J. & Capanoglu, E. (2015). Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. Journal of Functional Foods, 13, 1-10. https://doi.org/10.1016/j.jff.2014.12.02110.1016/j.jff.2014.12.021
  19. 19. Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R.D. & Capanoglu, E. (2016). A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition, 56, S110-S129. https://doi.org/10.1080/10408398.2015.104596910.1080/10408398.2015.104596926191781
  20. 20. Kumaran, A. & Joel karunakaran, R. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.03210.1016/j.foodchem.2005.03.032
  21. 21. Li, R., Shang, H., Wu, H., Wang, M., Duan, M. & Yang, J. (2018). Thermal inactivation kinetics and effects of drying methods on the phenolic profile and antioxidant activities of chicory (Cichorium intybus L.) leaves. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-27874-410.1038/s41598-018-27874-4601501029934537
  22. 22. Lim, Y.Y. & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT food science and technology, 40(9), 1664-1669. https://doi.org/10.1016/j.lwt.2006.12.01310.1016/j.lwt.2006.12.013
  23. 23. Matłok, N., Gorzelany, J., Piechowiak, T. & Balawejder, M. (2020). Influence of drying temperature on the content of bioactive compounds in scots pine (Pinus sylvestris L.) Shoots as well as yield and composition of essential oils. Acta Universitatis Cinbinesis, Series E: Food Technology, 24(1), 15-24. https://doi.org/10.2478/aucft-2020-000210.2478/aucft-2020-0002
  24. 24. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M. & Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & function, 5(6), 1113-1124. DOI: 10.1039/C3FO60702J10.1039/C3FO60702J
  25. 25. Mishra, K., Ojha, H. & Chaudhury, NK. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.12710.1016/j.foodchem.2011.07.127
  26. 26. Mizobutsi, G.P., Finger, F.L., Ribeiro, R.A., Puschmann, R., Neves, L.L.D.M. & Mota, W.F.D. (2010). Effect of pH and temperature on peroxidase and polyphenoloxidase activities of litchi pericarp. Scientia Agricola, 67(2), 213-217. https://doi.org/10.1590/S0103-9016201000020001310.1590/S0103-90162010000200013
  27. 27. Morelló, J-R., Motilva, M-J., Tovar, M-J. & Romero, M-P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chemistry, 85(3), 357-364. https://doi.org/10.1016/j.foodchem.2003.07.01210.1016/j.foodchem.2003.07.012
  28. 28. Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91(1-2), 3-20. https://doi.org/10.1016/S0377-8401(01)00227-910.1016/S0377-8401(01)00227-9
  29. 29. Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.10.5264/eiyogakuzashi.44.307
  30. 30. Prieto, P., Pineda, M. & Aguilar, M., (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E1. Analytical biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.401910.1006/abio.1999.401910222007
  31. 31. Roowi, S., Mullen, W., Edwards, C.A. & Crozier, A. (2009). Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Molecular Nutrition & Food Research, 53, S68-S75. https://doi.org/10.1002/mnfr.20080028710.1002/mnfr.20080028719415668
  32. 32. Saura-Calixto, F., Serrano, J. & Goñi, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492-501. https://doi.org/10.1016/j.foodchem.2006.02.00610.1016/j.foodchem.2006.02.006
  33. 33. Seraglio, S.K.T., Gonzaga, L.V., Schulz, M., Vitali, L., Micke, G.A., Costa, A.C.O., Fett, R. & Borges, G.D.C. (2018). Effects of gastrointestinal digestion models in vitro on phenolic compounds and antioxidant activity of juçara (Euterpe edulis). International Journal of Food Science Technology, 53(8), 1824-1831. https://doi.org/10.1111/ijfs.1381610.1111/ijfs.13816
  34. 34. Škerget, M., Kotnik, P., Hadolin, M., Hraš, A.R., Simonič, M. & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191-198. https://doi.org/10.1016/j.foodchem.2004.02.02510.1016/j.foodchem.2004.02.025
  35. 35. Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H.E., Altman, A., Kerem, Z. & Flaishman, M.A. (2006). Antioxidant Activities and Anthocyanin Content of Fresh Fruits of Common Fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717-7723. https://doi.org/10.1021/jf060497h10.1021/jf060497h17002444
  36. 36. Spanos, G.A. & Wrolstad, R.E. (1990). Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565-1571. https://doi.org/10.1021/jf00097a03010.1021/jf00097a030
  37. 37. Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157. https://doi.org/10.1007/s10311-006-0068-810.1007/s10311-006-0068-8
  38. 38. Ydjedd, S., Bouriche, S., López-Nicolás, R., Sánchez-Moya, T., Frontela-Saseta, C., Ros-Berruezo, G., Rezgui, F., Louaileche, H. & Kati, D.E. (2017). Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 65(4), 827-835. https://doi.org/10.1021/acs.jafc.6b0510310.1021/acs.jafc.6b0510328094929
  39. 39. Zoubiri, L., Bakir, S., Barkat, M., Carrillo, C. & Capanoglu, E. (2019). Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. Journal of Berry Research, 9(4), 709-724. DOI: 10.3233/JBR-19043210.3233/JBR-190432
DOI: https://doi.org/10.2478/aucft-2021-0002 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 15 - 30
Submitted on: Jan 24, 2021
Accepted on: May 20, 2021
Published on: Jun 26, 2021
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Farida Kehal, Loucif Chemache, Makhlouf Chaalal, Meriem Benbraham, Esra Capanoglu, Malika Barkat, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.