References
- ALJAAFREH, A. – ELZAGZOUG, E. Y. – ABUKHAIT, J. – SOLIMAN, A.-H. – ALJA’AFREH, S. S. – SIVANATHAN, A. – HUGHES, J. 2023. A real-time olive fruit detection for harvesting robot based on YOLO algorithms. In Acta Technologica Agriculturae, vol. 26, no. 3, pp. 121–132. DOI: https://doi.org/10.2478/ata-2023-0017
- ALI, H. – SALEEM, M. – ANSER, M. R. – KHAN, S. – ULLAH, R. – BILAL, M. 2018. Validation of fluorescence spectroscopy to detect adulteration of edible oil in extra virgin olive oil (EVOO) by applying chemometrics. In Applied Spectroscopy, vol. 72, no. 9, pp. 1371–1379. DOI: https://doi.org/10.1177/0003702818768485
- CAYUELA, J. A. – YOUSFI, K. – CARMEN MARTÍNEZ, M. – GARCÍA, J. M. 2014. Rapid determination of olive oil chlorophylls and carotenoids by using visible spectroscopy. In Journal of the American Oil Chemists’ Society, vol. 91, no. 10, pp. 1677–1684. DOI: https://doi.org/10.1007/s11746-014-2515-1
- EL MORABIT, Y. – EL MAADOUDI, M. – ALAHLAH, N. – AMHAMDI, H. – SALHI, A. – AHARI, M. 2024. Detection and quantification of olive oil adulteration using fluorescence spectroscopy and chemometric tools. In BIO Web of Conferences, vol. 109, article no. 01016. DOI: https://doi.org/10.1051/bioconf/202410901016
- El Orche, A. – Bouatia, M. – Mbarki, M. 2020. Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms. In Journal of Analytical Methods in Chemistry, vol. 2020, article ID 8860161. DOI: https://doi.org/10.1155/2020/8860161
- GANDUL-ROJAS, B. – CEPERO, M. R.-L. – MÍNGUEZ-MOSQUERA, M. I. 2000. Use of chlorophyll and carotenoid pigment composition to determine authenticity of virgin olive oil. In Journal of the American Oil Chemists’ Society, vol. 77, no. 8, pp. 853–858. DOI: https://doi.org/10.1007/s11746-000-0136-z
- GIULIANI, A. – CERRETANI, L. – CICHELLI, A. 2011. Chlorophylls in olive and in olive oil: Chemistry and occurrences. In Critical Reviews in Food Science and Nutrition, vol. 51, no. 7, pp. 678–690. DOI: https://doi.org/10.1080/10408391003768199
- GUNSTONE, F. D. 2011. Vegetable Oils in Food Technology: Composition, Properties and Uses. Chichester : Blackwell Publishing Ltd., 376 pp. ISBN 9781444332681 DOI: https://doi.org/10.1002/9781444339925
- HE, Y. – SONG, J. – OUYANG, W. – LI, Q. 2024. Formation mechanism and implementation path of a digital agriculture innovation ecosystem. In Tehnički Vjesnik, vol. 31, no. 2, pp. 402–411. DOI: https://doi.org/10.17559/TV-20231107001080
- HERNÁNDEZ-SÁNCHEZ, N. – LLEÓ, L. – AMMARI, F. – CUADRADO, T. R. – ROGER, J. M. 2017. Fast fluorescence spectroscopy methodology to monitor the evolution of extra virgin olive oils under illumination. In Food and Bioprocess Technology, vol. 10, no. 5, pp. 949–961. DOI: https://doi.org/10.1007/s11947-017-1866-7
- HINDMAN, J. C. – KUGEL, R. – SVIRMICKAS, A. – KATZ, J. J. 1977. Chlorophyll lasers: Stimulated light emission by chlorophylls and Mg-free chlorophyll derivatives. In Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 1, pp. 5–9. DOI: https://doi.org/10.1073/pnas.74.1.5
- HLAVÁČ, P. – BOŽIKOVÁ, M. – PETROVIĆ, A. 2019. Selected physical properties assessment of sunflower and olive oils. In Acta Technologica Agriculturae, vol. 22, no. 3, pp. 86–91. DOI: https://doi.org/10.2478/ata-2019-0016
- HELLWIG, M. 2020. Analysis of protein oxidation in food and feed products. In Journal of Agricultural and Food Chemistry, vol. 68, no. 46, pp. 12870–12885. DOI: https://doi.org/10.1021/acs.jafc.0c00711
- INANC, A. L. 2016. Differential method to determine thermal degradation kinetics of chlorophyll in virgin olive oil. In Italian Journal of Food Science, vol. 28, no. 1, pp. 90–95. DOI: https://doi.org/10.14674/1120-1770/ijfs.v462
- JOLAYEMI, O. S. – TOKATLI, F. – OZEN, B. 2016. Effects of malaxation temperature and harvest time on the chemical characteristics of olive oils. In Food Chemistry, vol. 211, pp. 776–783. DOI: https://doi.org/10.1016/j.foodchem.2016.05.134
- JOVIĆ, O. – HABINOVEC, I. – GALIĆ, N. – ANDRAŠEC, M. 2018. Maceration of extra virgin olive oil with common aromatic plants using ultrasound-assisted extraction: An UV-Vis spectroscopic investigation. In Journal of Spectroscopy, vol. 2018, no. 9, article no. 7510647. DOI: http://dx.doi.org/10.1155/2018/7510647
- KYRIAKIDIS, N. B. – SKARKALIS, P. 2000. Fluorescence spectra measurement of olive oil and other vegetable oils. In Journal of AOAC International, vol. 83, no. 6, pp. 1435–1439. DOI: https://doi.org/10.1093/jaoac/83.6.1435
- LAZZERINI, C. – CIFELLI, M. – DOMENICI, V. 2016. Chapter 6. Pigments in extra-virgin olive oil: Authenticity and quality. In Boskou, D. – Clodoveo, M. L. (eds). Products from Olive Tree. London : IntechOpen, pp. 99–114. ISBN 978-953-51-4164-8. DOI: https://doi.org/10.5772/64736
- LIA, F. – FORMOSA, J. P. – ZAMMIT-MANGION, M. – FARRUGIA, C. 2020. The first identification of the uniqueness and authentication of Maltese extra virgin olive oil using 3D-fluorescence spectroscopy coupled with multi-way data analysis. In Foods, vol. 9, no. 4, article no. 498. DOI: https://doi.org/10.3390/foods9040498
- MOROSAVLJEVIĆ, I. – KOZAK, D. – KOSOR, T. – MOROSAVLJEVIĆ, J. – FERLIČ, L. – GUBELJAK, N. 2024. The effects of ozone sterilization on the chemical and mechanical properties of 3D-printed biocompatible PMMA. In Micromachines, vol. 15, no. 4, article no. 472. DOI: https://doi.org/10.3390/mi15040472
- MUNAWAR, A. A. – KUSUMIYATI – ANDASURYANI – YUSMANIZAR – ADRIZAL. 2024. Near infrared technology coupled with different spectra correction approaches for fast and non-destructive prediction of chlorogenic acid on intact coffee beans. In Acta Technologica Agriculturae, vol 27, no. 1, pp. 23–29. DOI: https://doi.org/10.2478/ata-2024-0004
- SIKORSKA, E. – KHMELINSKII, I. – SIKORSKI, M. 2012. Chapter 4. Analysis of olive oils by fluorescence spectroscopy: Methods and applications. In BOSKOU, D. (ed). Olive Oil – Constituents, Quality, Health Properties and Bioconversions. London : IntechOpen, pp. 63–88. ISBN 978-953-307-921-9. DOI: https://doi.org/10.5772/30676
- SLAVOVA, V. – VLADIMIROVA-MIHALEVA, L. – MIHALEV, M. 2022. A method for fast-acting analysis of quality of unknown olive oils using fluorescence spectroscopy. In SOTIROV, S. S. – PENCHEVA, T. – KACPRZYK, J. – ATANASSOV, K. T. – SOTIROVA, E. – STANEVA, G. (eds). Contemporary Methods in Bioinformatics and Biomedicine and Their Applications (BioInfoMed 2020). Lecture Notes in Networks and Systems. Cham : Springer, vol. 374, pp. 354–362. DOI: https://doi.org/10.1007/978-3-030-96638-6_37
- SOARES, W. M. – ORLANDO, R. M. – MENEZES, H. C. 2024. Enhanced detection of benzo[a]pyrene in olive oil through low temperature liquid-liquid extraction coupled with constant energy synchronous fluorescence spectroscopy. In Journal of the Brazilian Chemical Society, vol. 36, no. 6, pp. 1–8. DOI: https://doi.org/10.21577/0103-5053.20230200
- VENTURINI, F. – SPERTI, M. – MICHELUCCI, U. – GUCCIARDI, A. – MARTOS, V. M. – DERIU, M. A. 2023a. Dataset of fluorescence spectra and chemical parameters of olive oils. arXiv:2301.04471. DOI: https://doi.org/10.48550/arXiv.2301.04471
- VENTURINI, F. – SPERTI, M. – MICHELUCCI, U. – GUCCIARDI, A. – MARTOS, V. M. – DERIU, M. A. 2023b. Extraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oil. In Journal of Food Engineering, vol. 336, article no. 111198. DOI: https://doi.org/10.1016/j.jfoodeng.2022.111198