References
- CATELANI, T. A. – SANTOS, J. R. – PÁSCOA, R. N. M. J. – PEZZA, L. – PEZZA, H. R. – LOPES, J. A. 2018. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study. In Talanta, vol. 179, pp. 292–299. DOI: https://doi.org/10.1016/j.talanta.2017.11.010
- CHEN, H.– LIN, Z. – TAN, C. 2018. Fast quantitative detection of sesame oil adulteration by near-infrared spectroscopy and chemometric models. In Vibrational Spectroscopy, vol. 99, pp. 178–183. DOI: https://doi.org/10.1016/j.vibspec.2018.10.003
- CORREIA, R. M. – TOSATO, F. – DOMINGOS, E. – RODRIGUES, R. R. T. – AQUINO, L. F. M. – FILGUEIRAS, P. R. – LACERDA, V. – ROMÃO, W. 2018. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. In Talanta, vol. 176, pp. 59–68. DOI: https://doi.org/10.1016/j.talanta.2017.08.009
- FARAG, M. A. – VON BERGEN, M. – SALEH, B. M. – HOMSI, M. N. – ABD EL-AL, M. S. 2021. How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. In Trends in Food Science and Technology, vol. 118, part B, pp. 920–937. DOI: https://doi.org/10.1016/j.tifs.2021.11.004
- HAYATI, R. – MUNAWAR, A. A. – FACHRUDDIN, F. 2020. Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango. In Data in Brief, vol. 29, article no. 105571. DOI: https://doi.org/10.1016/j.dib.2020.105571
- JACONI, A. – VOS, C. – DON, A. 2019. Near infrared spectroscopy as an easy and precise method to estimate soil texture. In Geoderma, vol. 337, pp. 906–913. DOI: https://doi.org/10.1016/j.geoderma.2018.10.038
- KLIKAROVÁ, J. – ŘEHÁKOVÁ, B. – ČESLOVÁ, L. 2022. Evaluation of regular and decaffeinated (un)roasted coffee beans using HPLC and multivariate statistical methods. In Journal of Food Composition and Analysis, vol. 114, article no. 104841. DOI: https://doi.org/10.1016/j.jfca.2022.104841
- KULAPICHITR, F. – BOROMPICHAICHARTKUL, C. – FANG, M. – SUPPAVORASATIT, I. – CADWALLADER, K. R. 2022. Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans. In Food Chemistry, vol. 366, article no. 130504. DOI: https://doi.org/10.1016/j.foodchem.2021.130504
- LAZAAR, A. – MOUAZEN, A. M. – EL HAMMOUTI, K. – FULLEN, M. – PRADHAN, B. – MEMON, M. S. – ANDICH, K. – MONIR, A. 2020. The application of proximal visible and near-infrared spectroscopy to estimate soil organic matter on the Triffa Plain of Morocco. In International Soil and Water Conservation Research, vol. 8, no. 2, pp. 195–204. DOI: https://doi.org/10.1016/j.iswcr.2020.04.005
- LEMOS, M. F. – DE ANDRADE SALUSTRIANO, N. – DE SOUZA COSTA, M. M. – LIRIO, K. – DA FONSECA, A. F. A. – PACHECO, H. P. – ENDRINGER, D. C. – FRONZA, M. – SCHERER, R. 2022. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. In Journal of Saudi Chemical Society, vol. 26, no. 3, article no. 101467. DOI: https://doi.org/10.1016/j.jscs.2022.101467
- MIN, J. – CAO, Z. – CUI, L. – LI, F. – LU, Z. – HOU, Y. – YANG, H. – WANG, X. – XU, C. 2023. The association between coffee consumption and risk of incident depression and anxiety: Exploring the benefits of moderate intake. In Psychiatry Research, vol. 326, article no. 115307. DOI: https://doi.org/10.1016/j.psychres.2023.115307
- MIREEI, S. A. – AMINI-POZVEH, S. – NAZERI, M. 2017. Selecting optimal wavelengths for detection of insect infested tomatoes based on SIMCA-aided CFS algorithm. In Postharvest Biology and Technology, vol. 123, pp. 22–32. DOI: https://doi.org/10.1016/j.postharvbio.2016.08.009
- MUNAWAR, A. A. – DEVIANTI – SATRIYO, P. – BAHARI, S. A. 2022a. Near infrared spectroscopy: rapid and simultaneous approach to predict the fixed carbon, volatile matter and ash contents in biochar produced from agricultural residues. In Acta Technologica Agriculturae, vol. 25, no. 1, pp. 1–6. DOI: https://doi.org/10.2478/ata-2022-0001
- MUNAWAR, A. A. – ZULFAHRIZAL – MEILINA, H. – PAWELZIK, E. 2022b. Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches. In Computers and Electronics in Agriculture, vol. 193, article no. 106657. DOI: https://doi.org/10.1016/j.compag.2021.106657
- NICOLAÏ, B. M. – BEULLENS, K. – BOBELYN, E. – PEIRS, A. – SAEYS, W. – THERON, K. I. – LAMMERTYN, J. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. In Postharvest Biology and Technology, vol. 46, pp. 99–118. DOI: https://doi.org/10.1016/j.postharvbio.2007.06.024
- PASQUINI, C. 2018. Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. In Analytica Chimica Acta, vol. 1026, pp. 8–36. DOI: https://doi.org/10.1016/j.aca.2018.04.004
- SANTOS, J. R. – SARRAGUÇA, M. C. – RANGEL, A. O. S. S. – LOPES, J. A. 2012. Evaluation of green coffee beans quality using near infrared spectroscopy: A quantitative approach. In Food Chemistry, vol. 135, no. 3, pp. 1828–1835. DOI: https://doi.org/10.1016/j.foodchem.2012.06.059
- SHAN, J. – SUZUKI, T. – SUHANDY, D. – OGAWA, Y. – KONDO, N. 2014. Chlorogenic acid (CGA) determination in roasted coffee beans by Near Infrared (NIR) spectroscopy. In Engineering in Agriculture, Environment and Food, vol. 7, no. 4, pp. 139–142. DOI: https://doi.org/10.1016/j.eaef.2014.08.003
- SOUZA, J. C. – PASQUINI, C. – HESPANHOL, M. C. 2022. Feasibility of compact near-infrared spectrophotometers and multivariate data analysis to assess roasted ground coffee traits. In Food Control, vol. 138, article no.109041. DOI: https://doi.org/10.1016/j.foodcont.2022.109041
- TUGNOLO, A. – GIOVENZANA, V. – MALEGORI, C. – OLIVERI, P. – CASSON, A. – CURATITOLI, M. – GUIDETTI, R. – BEGHI, R. 2021. A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. In Food Control, vol. 130, article no. 108312. DOI: https://doi.org/10.1016/j.foodcont.2021.108312
- VIEIRA, L. S. – ASSIS, C. – DE QUEIROZ, M. E. L. R. – NEVES, A. A. – DE OLIVEIRA, A. F. 2021. Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection. In Food Chemistry, vol. 345, article no. 128866. DOI: https://doi.org/10.1016/j.foodchem.2020.128866
- WALSH, K. B. – MCGLONE, V. A. – HAN, D. H. 2020. The uses of near infra-red spectroscopy in postharvest decision support: A review. In Postharvest Biology and Technology, vol. 163, pp. 111139. DOI: https://doi.org/10.1016/j.postharvbio.2020.111139
- WANG, Q. – ZHANG, H. – LI, F. – GU, C. – QIAO, Y. – HUANG, S. 2021. Assessment of calibration methods for nitrogen estimation in wet and dry soil samples with different wavelength ranges using near-infrared spectroscopy. In Computers and Electronics in Agriculture, vol. 186, article no. 106181. DOI: https://doi.org/10.1016/j.compag.2021.106181