Have a personal or library account? Click to login
Accelerating Atmosphere Modeling: Neural Network Enhancements for Faster NRLMSISE Calculations Cover

Accelerating Atmosphere Modeling: Neural Network Enhancements for Faster NRLMSISE Calculations

Open Access
|Oct 2025

References

  1. Choliy V. (2007). New GNSS processor (Juliette) for geodynamic and atmospheric tasks. Geophysical Research Abstracts, v.9, EGU General Assembly 2007.
  2. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 303–314 (1989). https://doi.org/10.1007/BF02551274
  3. Elfwing, S., Uchibe, E. & Doya, K. (2018) ‘Sigmoid-weighted linear units for neural network function approximation in reinforcement learning’, Neural Networks, 107, pp. 3–11. doi: 10.1016/j.neunet.2017.12.012
  4. Hampel, F.R., 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69 (346), pp. 383–393. https://doi.org/10.1080/01621459.1974.10482962
  5. Hornik, K., Stinchcombe, M. and White, H. (1989) ‘Multilayer feedforward networks are universal approximators’, Neural Networks, 2(5), pp. 359–366. https://doi.org/10.1016/0893-6080(89)90020-8
  6. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019, November 20). Searching for MobileNetV3 [Preprint]. arXiv. https://arxiv.org/abs/1905.02244
  7. Izzo, D., Acciarini, G. & Biscani, F. (2024) ‘NeuralODEs for VLEO simulations: Introducing thermoNET for Thermosphere Modeling’. Proceedings of the 29th International Symposium on Space Flight Dynamics (ISSFD 2024), Darmstadt, Germany, 22–26 April 2024. ESA/ESOC. Available at: https://issfd.org/ISSFD_2024/ISSFD2024_3-2.pdf (Accessed 16 July 2025)
  8. Khorrami, M.S. et al. (2023) ‘An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials’, npj Computational Materials, 9, 37. https://doi.org/10.1038/s41524-023-00991-z
  9. Kingma, D.P. and Ba, J. (2015) ‘Adam: A method for stochastic optimization’, Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May. Available at: https://arxiv.org/abs/1412.6980
  10. Loshchilov, I. and Hutter, F. (2019) ‘Decoupled weight decay regularization’, Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May. Available at: https://arxiv.org/abs/1711.05101
  11. Matzka, J., Bronkalla, O., Tornow, K., Elger, K. and Stolle, C., 2021. Geomagnetic Kp index. V. 1.0. GFZ Data Services, https://doi.org/10.5880/Kp.0001
  12. NASA/GSFC CCMC (2025) NRLMSISE-00 empirical atmosphere model, Fortran source code. Available at: https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php (Accessed: 5 July 2025).
  13. Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.
  14. Raina, R., Madhavan, A. & Ng, A.Y. (2009) ‘Large-scale deep unsupervised learning using graphics processors’, Proceedings of the 26th International Conference on Machine Learning, pp. 873–880.
  15. Smith, L.N. (2015) ‘Cyclical learning rates for training neural networks. arXiv preprint arXiv:1506.01186. Available at: https://arxiv.org/abs/1506.01186.
  16. Smith, L.N. (2017) ‘Cyclical learning rates for training neural networks’, Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2017), Santa Rosa, CA, 24–31 March. Piscataway, NJ: IEEE, pp. 464–472. doi: 10.1109/WACV.2017.58
  17. Smith, L.N. (2018) ‘A disciplined approach to neural-network hyper-parameters: Part 1 – learning rate, batch size, momentum and weight decay’. arXiv preprint arXiv:1803.09820. Available at: https://arxiv.org/abs/1803.09820
  18. Tapping, K.F. (2013) ‘The 10.7 cm solar radio flux (F10.7)’, Space Weather, 11 (7), pp. 394–406. doi: 10.1002/swe.20064
  19. Zhang, Q., Zhang, J., Liang, L., Li, Z. & Zhang, T. (2021) ‘A deep-learning-based surrogate model for estimating the flux and power distribution solved by diffusion equation’, EPJ Web of Conferences, 247, 03013. https://doi.org/10.1051/epjconf/202124703013
  20. Zhang, Y., Yu, J., Chen, J., & Sang, J. (2021). An Empirical Atmospheric Density Calibration Model Based on Long Short-Term Memory Neural Network. Atmosphere, 12(7), 925. https://doi.org/10.3390/atmos12070925
DOI: https://doi.org/10.2478/arsa-2025-0007 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 121 - 136
Submitted on: Apr 18, 2025
|
Accepted on: Oct 1, 2025
|
Published on: Oct 6, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Volodymyr Kashyn, Vasyl Choliy, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.