References
- Choliy V. (2007). New GNSS processor (Juliette) for geodynamic and atmospheric tasks. Geophysical Research Abstracts, v.9, EGU General Assembly 2007.
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 303–314 (1989).
https://doi.org/10.1007/BF02551274 - Elfwing, S., Uchibe, E. & Doya, K. (2018) ‘Sigmoid-weighted linear units for neural network function approximation in reinforcement learning’, Neural Networks, 107, pp. 3–11. doi: 10.1016/j.neunet.2017.12.012
- Hampel, F.R., 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69 (346), pp. 383–393.
https://doi.org/10.1080/01621459.1974.10482962 - Hornik, K., Stinchcombe, M. and White, H. (1989) ‘Multilayer feedforward networks are universal approximators’, Neural Networks, 2(5), pp. 359–366.
https://doi.org/10.1016/0893-6080(89)90020-8 - Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019, November 20). Searching for MobileNetV3 [Preprint]. arXiv.
https://arxiv.org/abs/1905.02244 - Izzo, D., Acciarini, G. & Biscani, F. (2024) ‘NeuralODEs for VLEO simulations: Introducing thermoNET for Thermosphere Modeling’. Proceedings of the 29th International Symposium on Space Flight Dynamics (ISSFD 2024), Darmstadt, Germany, 22–26 April 2024. ESA/ESOC. Available at:
https://issfd.org/ISSFD_2024/ISSFD2024_3-2.pdf (Accessed 16 July 2025) - Khorrami, M.S. et al. (2023) ‘An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials’, npj Computational Materials, 9, 37.
https://doi.org/10.1038/s41524-023-00991-z - Kingma, D.P. and Ba, J. (2015) ‘Adam: A method for stochastic optimization’, Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May. Available at:
https://arxiv.org/abs/1412.6980 - Loshchilov, I. and Hutter, F. (2019) ‘Decoupled weight decay regularization’, Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May. Available at:
https://arxiv.org/abs/1711.05101 - Matzka, J., Bronkalla, O., Tornow, K., Elger, K. and Stolle, C., 2021. Geomagnetic Kp index. V. 1.0. GFZ Data Services,
https://doi.org/10.5880/Kp.0001 - NASA/GSFC CCMC (2025) NRLMSISE-00 empirical atmosphere model, Fortran source code. Available at:
https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php (Accessed: 5 July 2025). - Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.
- Raina, R., Madhavan, A. & Ng, A.Y. (2009) ‘Large-scale deep unsupervised learning using graphics processors’, Proceedings of the 26th International Conference on Machine Learning, pp. 873–880.
- Smith, L.N. (2015) ‘Cyclical learning rates for training neural networks. arXiv preprint arXiv:1506.01186. Available at:
https://arxiv.org/abs/1506.01186 . - Smith, L.N. (2017) ‘Cyclical learning rates for training neural networks’, Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2017), Santa Rosa, CA, 24–31 March. Piscataway, NJ: IEEE, pp. 464–472. doi: 10.1109/WACV.2017.58
- Smith, L.N. (2018) ‘A disciplined approach to neural-network hyper-parameters: Part 1 – learning rate, batch size, momentum and weight decay’. arXiv preprint arXiv:1803.09820. Available at:
https://arxiv.org/abs/1803.09820 - Tapping, K.F. (2013) ‘The 10.7 cm solar radio flux (F10.7)’, Space Weather, 11 (7), pp. 394–406. doi: 10.1002/swe.20064
- Zhang, Q., Zhang, J., Liang, L., Li, Z. & Zhang, T. (2021) ‘A deep-learning-based surrogate model for estimating the flux and power distribution solved by diffusion equation’, EPJ Web of Conferences, 247, 03013.
https://doi.org/10.1051/epjconf/202124703013 - Zhang, Y., Yu, J., Chen, J., & Sang, J. (2021). An Empirical Atmospheric Density Calibration Model Based on Long Short-Term Memory Neural Network. Atmosphere, 12(7), 925.
https://doi.org/10.3390/atmos12070925