References
- Ardourel V., Jebeile J. (2016) On the presumed superiority of analytical solutions over numerical methods. European Journal for Philosophy of Science, Vol.7, No.2, 201-220. https://doi.org/10.1007/s13194-016-0152-2
- Banu M S., Raju I., Zaman U H M. (2021) A Study On Numerical Solution of Initial Value Problem by Using Euler’s Method, Runge-Kutta 2nd Order, Runge-Kutta 4th Order, And Runge-Kutta Fehlberg Method with MATHLAB. International Journal of Scientific & Engineering Research, Vol. 12, No. 3.
- Butcher J C. (2016) Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, Second Edition. https://doi.org/10.1002/9781119121534
- Chapra S C. (2012) Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill, Third Edition, ISBN 978-0-07-340110-2.
- Chen J., Xiao P., Zhang Y., Wu B. (2013) GPS/GLONASS system bias estimation and application in GPS/GLONASS combined positioning. China Satellite Navigation Conference (CSNC). Chapter in Lecture notes in electrical engineering, pp. 323-333.
- Cook G E. (1962) Luni-Solar perturbations of the orbit of an Earth satellite. Geophysical Journal of the Royal Astronomical Society, Vol. 6, No.3, 271-291. https://doi.org/10.1111/j.1365-246x.1962.tb00351.x
- Dormand J R., Prince P J. (1980) A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics, Vol. 6, No. 1, 19-26. https://doi.org/10.1016/0771-050X(80)90013-3
- Góral W., Skorupa B. (2015) Calculation of position and velocity of GLONASS satellite based on analytical theory of motion. Artificial Satellites, Vol. 50, No. 3, 105-114. DOI: 10.1515/arsa-2015-0008
- Grunter W. (2015) The Receiver Independent Exchange Format RINEX, Version 3.03. International GNSS Service (IGS), RINEX Working Group and Radio Technical Commission for Maritime Services. Special Committee 104 (RTCM-SC104).
- Habrich H. (1999) Geodetic applications of the Global Navigation Satellite System (GLONASS) and of GLONASS/GPS combinations. Doctoral thesis, Faculty of Science, University of Bern. http://ftp.aiub.unibe.ch/papers/hhdiss.pdf
- ICD-GLONASS. (2016) GLONASS, General Description of Code, Interface Control Document, Edition 1.0, Moscow.
- Levine J. (2002) Time and frequency distribution using satellites. Reports on Progress in Physics, Vol. 65, No. 8, 1119-1164. https://doi.org/10.1088/0034-4885/65/8/201
- Lin Y., Guo H., Yu M. (2009) A Comparison for GLONASS Satellite Coordinate Calculation, International Conference on Information Engineering and Computer Science. https://ieeexplore.ieee.org/document/5365110
- Maciuk K. (2016) Different approaches in GLONASS orbit computation from broadcast ephemeris. Geodetski vestnik, Vol. 60, No. 3, 455-466. DOI: 10.15292/geodetski-vestnik.2016.03.455-466
- Mathworks. (2024) Solve nonstiff differential equations-medium order method-MATLAB ode45. https://www.mathworks.com/help/matlab/ref/ode45.html
- Medjahed S A., Niati A., Kheloufi N., Taibi H. (2021) Implementation of the variation of the Luni-Solar acceleration into GLONASS orbit calculus. Geodetski Vestnik, Vol. 65, No. 03, 459471. DOI: 10.15292/geodetski-vestnik.2021.03.459-471
- Montenbruck O., Steigenberger P., Aicher M. (2020) A long-term broadcast ephemeris model for extended operation of GNSS satellites. Navigation Journal of the Institute of Navigation, Vol. 68, No. 01, 199-215. doi.org/10.1002/navi.404
- Montenbruck O., Gill E. (2012) Satellite Orbits: models, methods, and applications. Applied Mechanics Reviews, springer.
- Noll C. E. (2010). The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Advances in Space Research, Vol. 45, N°.12, 1421–1440. doi.org/10.1016/j.asr.2010.01.018
- Oliveira L B., Zapella M., Hunt R. (2018) Global Positioning System and Global Navigation Satellite System constellations for better time synchronising reliability. The Journal of Engineering, Vol. 15, 935-937. https://doi.org/10.1049/joe.2018.0183
- Pace S., Frost G P., Lachow I., Frelinger D R., Fossum., D., Wassem D., Pinto M M. (1995) The Global Positioning System: Assessing National Policies. In Rand Corporation eBooks. https://doi.org/10.7249/mr614
- Petrovski I G. (2014) GPS, GLONASS, Galileo, and BeiDou for mobile devices: from instant to precise positioning. Cambridge University Press, 1st ed., Vol. 1
- Polischuk G M., Kozlov V I., Ilitchov V V., Kozlov A G., Bartenev V A., Kossenko V E., Anphimov N A., Revnivykh S G., Pisarev S B., Tyulyakov A E., Vorokhovsky Y L. (2002) The Global Navigation Satellite System GLONASS: Development and Usage in the 21st Century. 34th Annual Precise Time and Time Interval (PTTI) Meeting, 3-5 December 2002, Reston, VA.
- Press W H., Teukolsky S A., Vetterling W T., Flannery B P.(2007) Numerical Recipes, the Art of Scientific Computing.3rd Edition, Cambridge University Press.
- Sanz J., Zornoza J., Hernández-Pajares M. (2013) GNSS DATA PROCESSING-Volume I, Fundamentals and Algorithms, European Space Agency. ISBN 978-92-9221-886-7
- Sarkar S., Bose A. (2017) Lifetime Performances of Modernized GLONASS Satellites : A Review. Artificial Satellites, Vol. 52, No. 4, 85-97. https://doi.org/10.1515/arsa-2017-0008
- Shi C., Wei N. (2019) Satellite Navigation for Digital Earth. In Guo H., Goodchild M. F., Annoni A, Manual of Digital Earth. Springer Nature. International Society of Digital Earth. https://doi.org/10.1007/978-981-32-9915-3
- Solórzano, C R H., De Almeida Prado A F B. (2013) A comparison of averaged and full models to study the Third-Body perturbation. The Scientific World JOURNAL, Vol. 2013, No.1. https://doi.org/10.1155/2013/136528
- Waleed K A. (2013) Advantages and Disadvantages of Using MATLAB/ode45 for Solving Differential Equations in Engineering Applications. International Journal of Engineering (IJE), Vol. 7, No. 1, 25-3