References
- Barnes, R. T. H., Hide, R., White, A. A., Wilson, C. A. (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. Lond., A Math. phys. sci., (1792), 31–73. https://doi.org/10.1098/rspa.1983.0050
- Bell, M. J., Hide, R., Sakellarides, G. (1991) Atmospheric angular momentum forecasts as novel tests of global numerical weather prediction models. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 334, 55–92. https://doi.org/10.1098/rsta.1991.0003.
- Brzezinski, A. (1992) Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. Manuscr. Geod., 17, 3–20.
- Dill, R., Dobslaw, H. (2010) Short-term polar motion forecasts from earth system modeling data. J. Geodesy, 84 (9), 529–536. https://doi.org/10.1007/s00190-010400-0391-5.
- Dill, R., Dobslaw, H., Thomas, M. (2013) Combination of modeled shortterm angular momentum function forecasts from atmosphere, ocean, and hydrology with 90-day EOP predictions. J. Geodesy, 87 (198), 567–577. https://doi.org/10.1007/s00190-013-0631-6.
- Dill, R., Dobslaw, H., Thomas, M. (2018) Improved 90-day Earth orientation predictions from angular momentum of atmosphere, ocean, and terrestrial hydrosphere. J. Geodesy, 92. https://doi.org/10.1007/s00190-018-1158-7.
- Dill, R., Dobslaw, H., Thomas, M. (2019) Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. J. Geodesy, 93, 3, 287–295. https://doi.org/10.1007/s00190-018-1158-7.
- Dill, R., Saynisch-Wagner, J, Irrgang, C., Thomas, M. (2021) Improving atmospheric angular momentum forecasts by machine learning. Earth and Space Science, 8. Earth and Space Science, 8. https://doi.org/10.1029/2021EA002070.
- Dobslaw, H., & Dill, R. (2017) Predicting Earth Orientation Changes from Global Forecasts of Atmosphere-Hydrosphere Dynamics. Advances in Space Research. https://doi.org/10.1016/j.asr.2017.11.044.
- Freedman, A. P., Steppe, J. A., Dickey, J. O., Eubanks, T. M., & Sung, L. Y. (1994) The short-term prediction of universal time and length-of-day using atmospheric angular momentum. Journal of Geophysical Research, 99(B4), 6981–6996. https://doi.org/10.1029/93JB02976.
- Gou, J., Kiani Shahvandi, M., Hohensinn, R., & Soja, B. (2023). Ultra-short-term prediction of LOD using LSTM neural networks. J Geod 97, 52. https://doi.org/10.1007/s00190-023-01745-x
- Kiani, MS., & Soja, B. (2022). Inclusion of data uncertainty in machine learning and its application in geodetic data science, with case studies for the prediction of Earth orientation parameters and GNSS station coordinate time series. Advances in Space Research, 70(3), 563–575. https://doi.org/10.1016/j.asr.2022.05.042
- Kiani, MS., Gou, J., Schartner, M., & Soja, B. (2022a). Data Driven Approaches for the Prediction of Earth's Effective Angular Momentum Functions. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 6550–6553). IEEE. https://doi.org/10.1109/IGARSS46834.2022.9883545
- Kiani, MS., Schartner, M., & Soja, B. (2022b). Neural ODE differential learning and its application in polar motion prediction. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB024775. https://doi.org/10.1029/2022JB024775
- Kur, T., Dobslaw, H., Śliwińska, J., Nastula, J., Wińska, M., & Partyka, A. (2022) Evaluation of selected short-term predictions of UT1-UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth, Planets and Space, 74(1), 1–9. https://doi.org/10.1186/s40623-022-01753-9
- Modiri, S., Belda, S., Hoseini, M., Heinkelmann, R., Ferrándiz, J. M., & Schuh, H. (2020). A new hybrid method to improve the ultra-short-term prediction of LOD. Journal of geodesy, 94, 1–14. https://doi.org/10.1007/s00190-020-01354-y
- Von Storch, H., Zwiers, F. W. (1999) Forecast quality evaluation. In Statistical analysis in climate research (p. 391–406). Cambridge University Press. https://doi.org/10.1017/CBO9780511612336.019.