Have a personal or library account? Click to login
Orbit Determination of Chinese Rocket Bodies from the Picosecond Full-Rate Laser Measurements Cover

Orbit Determination of Chinese Rocket Bodies from the Picosecond Full-Rate Laser Measurements

By: Paweł Lejba  
Open Access
|Jan 2024

References

  1. Bennett J., Sang J., Smith C., Zhang K. (2015) An analysis of very short-arc orbit determination for low-earth objects using sparse optical and laser tracking data, Advances in Space Research, Vol. 55, Issue 2, 617–629, DOI: https://doi.org/10.1016/j.asr.2014.10.020.
  2. Byers M., Wright E., Boley A., Byers C. (2022) Unnecessary risks created by uncontrolled rocket reentries. Nature Astronomy, 6, 1093–1097 (2022). https://doi.org/10.1038/s41550-022-01718-8.
  3. Cordelli E., Vananti A., Schildknecht T. (2016) Covariance study to evaluate the influence of optical follow-up strategies on estimated orbital parameters, Acta Astronautica, Vol. 122, 76–89, DOI: https://doi.org/10.1016/j.actaastro.2016.01.020.
  4. Cordelli E., Vananti A., Schildknecht T. (2020) Analysis of laser ranges and angular measurements data fusion for space debris orbit determination, Advances in Space Research, Vol. 65, Issue 1, 419–434, DOI: https://doi.org/10.1016/j.asr.2019.11.009.
  5. Czajkowski M. (2021) Anti-Satellite Weapons: A Political Dimension, Safety&Defense, ISSN 2450-551X, DOI: https://doi.org/10.37105/sd.129.
  6. Greene B. (2002) Laser tracking of space debris, Proceedings of 13th Laser Ranging Workshop, Washington 2002, https://cddis.nasa.gov/lw13/docs/papers/adv_greene_1m.pdf.
  7. Harrison T., Johnson K., Moye J., Young M. (2021) Space Threat Assessment 2021 Center for Strategic & International Studies, Washington, DC 20036, 202-887-0200, https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210331_Harrison_SpaceThreatAssessment2021.pdf?gVYhCn79enGCOZtcQnA6MLkeKlcwqqks.
  8. Kelso T. (2007) Validation of SGP4 and IS-GPS-200D against GPS precision ephemerides, AAS 07-127, Proccedings of the American Astronautical Society/American Institute of Aeronautics and Astronautics Space Flight Mechanics Conference, Paper AAS 07-127, 1-14, Sedona, Arizona, 2007, https://celestrak.org/publications/AAS/07-127/AAS-07-127.pdf.
  9. Kirchner G., Koidl F., Friederich F., Buske I., Voelker U., Riede W., (2013) Laser measurements to space debris from Graz SLR station, Advances in Space Research, Vol. 51, Issue 1, 21–24, DOI: https://doi.org/10.1016/j.asr.2012.08.009.
  10. Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C., Dmytrotsa, A., Ploner, M., Bianco, G., Medvedskij, M., Makeyev, A., Appleby, G., Suzuki, M., Torre, J.M., Zhongping, Z., Grunwaldt, L., Feng, Q. (2014) Attitude and spin period of space debris Envisat measured by satellite laser ranging, IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, Issue 12, 7651–7657, DOI: https://doi.org/10.1109/TGRS.2014.2316138.
  11. Kucharski D., Bennet J., Kirchner G. (2016) Laser de-spin maneuver for an active debris removal mission a realistic scenario for Envisat, Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, Hawaii 2016, https://amostech.com/TechnicalPapers/2016/Poster/Kucharski.pdf.
  12. Kucharski D., Kirchner G., Bennett J.C., Lachut M., Sośnica K., Koshkin N., Shakun L., Koidl F., Steindorfer M., Wang P., Fan C., Han H., Grunwaldt L., Wilkinson M., Rodriguez J., Bianco G., Vespe F., Catalan M., Salmins K., Del Pino J.R., Lim H.C., Park E., Moore C., Lejba P., Suchodolski T., (2017) Photon pressure force on space debris TOPEX/Poseidon measured by Satellite Laser Ranging, Earth and Space Science, Vol. 4, Issue 10, 661–668, DOI: https://doi.org/10.1002/2017EA000329.
  13. Lejba P., Suchodolski T., Schillak S. Bartoszak J., Michałek P., Zapaśnik S. (2016) New face of the Borowiec satellite laser ranging station, Proceedings of 20th International Workshop on Laser Ranging, Paper No. 25, Potsdam, Germany 2016, https://cddis.nasa.gov/lw20/docs/2016/papers/25-Lejba_paper.pdf.
  14. Lejba P., Suchodolski T., Michałek P., Bartoszak J., Schillak S., Zapaśnik S. (2018) First laser measurements to space debris in Poland, Advances in Space Research, Vol. 61, Issue 10, 2609–2616, DOI: https://doi.org/10.1016/j.asr.2018.02.033.
  15. McCarthy J. J., Rowton S., Moore D., Pavlis D. E., Luthcke S. B., Tsaoussi L. S. (2015) GEODYN II System Description, Space Geodesy Branch, Code 926, NASA GSFC, Greenbelt, Maryland 2015, https://earth.gsfc.nasa.gov/sites/default/files/neptune/files/geodyn_vol1.pdf.
  16. Mendes, V. B., Prates G., Pavlis E. C., Pavlis D. E., Langley R. B. (2002) Improved mapping functions for atmospheric refraction correction in SLR, Geophysical Research Letters, Vol. 29, Issue10, 53-1–53-4, DOI: https://doi.org/10.1029/2001GL014394
  17. Mendes V.B., Pavlis E.C. (2004) High-accuracy zenith delay prediction at optical wavelengths, Geophysical Research Letters, Vol. 31, Issue 14, L14602, 1–5, DOI: https://doi.org/10.1029/2004GL020308
  18. Pearlman M., Arnold D., Davis M., Barlier F., Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E.C., Sośnica K., Bloßfeld M. (2019). Laser geodetic satellites: a high-accuracy scientific tool, Journal of Geodesy, Vol. 93, 2181 – 2194, DOI:https://doi.org/10.1007/s00190-019-01228-y.
  19. Pearlman M.R., Noll C.E., Pavlis E.C., Lemoine F.G., Combrink L., Degnan J.J., Kirchner G., Schreiber U. (2019). The ILRS: approaching 20 years and planning for future, Journal of Geodesy, Vol. 93, 2161 – 2180, DOI: https://doi.org/10.1007/s00190-019-01241-1.
  20. Phipps C.R., Baker K.L., Libby S. B., Liedahl D.A., Olivier S.S., Pleasance L.D., Rubenchik A., Trebes J.E., George E.V., Marcovici B., Reilly J.P., Valley M.T. (2012) Removing orbital debris with lasers, Advances in Space Research, Vol. 49, Issue 9, 1283–1300, DOI: https://doi.org/10.1016/j.asr.2012.02.003.
  21. Rodriguez-Villamizar J and Schildknecht T. (2022) Daylight Measurement Acquisition of Defunct Resident Space Objects Combining Active and Passive Electro-Optical Systems, IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 1–17, DOI: https://doi.org/10.1109/TGRS.2022.3179719.
  22. Sang J., Smith C., (2012) An analysis of observations from EOS space debris tracking system, Proceedings of the 11th Australian Space Science Conference, National Space Society of Australia Ltd, GPO Box 7048, Sydney NSW 2001, Australia, 179–189.
  23. Scharring S., Dreyer H., Wagner G., Kästel J., Wagner P., Schafer E., Riede W., Bamann C., Hugentobler U., Lejba P., Suchodolski T., Döberl E., Weinzinger D., Promper W., Flohrer T., Setty S., Zayer I., Di Mira A., and Cordelli E. (2021) LARAMOTIONS: a conceptual study on laser networks for near-term collision avoidance for space debris in the low Earth orbit, Applied Optics, Vol. 60, Issue 31, 24–36, DOI: https://doi.org/10.1364/AO.432160.
  24. Schildknecht T., Silha J. (2017) Determining and modeling space debris attitude states by fusing data from different observation techniques, Proceedings of the 7th European Space Debris Conference, Paper No.1067, ESA/ESOC, Darmstadt, Germany 2017, https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/1067/SDC7-paper1067.pdf.
  25. Silha J., Schildknecht T., Pittet J.N., Bodenmann D., Kanzler R., Kaerraeng P., Krag H., (2016) Comparison of Envisat’s attitude simulation and real optical and SLR observation in order to refine the satellite attitude model, Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, Hawaii 2016, https://amostech.com/TechnicalPapers/2016/NROC/Silha.pdf.
  26. Smagło A., Lejba P., Schillak S., Suchodolski T., Michałek P., Zapaśnik S., Bartoszak J. (2021) Measurements to space debris in 2016–2020 by laser sensor at Borowiec Poland, Artificial Satellites, Journal of Planetary Geodesy, Vol. 56, Issue 4, 119–134. DOI: https://doi.org/10.2478/arsa-2001-0009.
  27. Smith C.H. (2006) The EOS space debris tracking system, Proceedings of Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, Hawaii 2006, https://amostech.com/TechnicalPapers/2006/Satellite_Metrics/Smith.pdf.
  28. Steindorfer M.A., Kirchner G., Koidl F., Wang P., Jilete B., Flohrer T. (2020) Daylight space debris laser ranging, Nature Communications, Vol. 11, No. 3735, https://doi.org/10.1038/s41467-020-17332-z.
  29. Vallado A. D. (2003) Covariance Transformations for Satellite Flight Dynamics Operations, Proccedings of American Astronautical Society/American Institute of Aeronautics and Astronautics Space Flight Mechanics Conference, Paper AAS 03-526, 1-35, Big Sky, Montana, 2003, Google Scholar.
  30. Voelker U., Friederich F., Buske I., Hampf D., Riede W., Giesen A., (2013) Laser based observation of space debris: taking benefits from the fundamental wave, Proceedings of the 6th European Conference on Space Debris, Paper No. 186, ESA/ESOC, Darmstadt, Germany 2013, https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/186/SDC6-paper186.pdf.
  31. Zeitlhofler J., Bloßfeld M., Rudenko S., Dettmering D., Seitz F. (2023) Station-dependent satellite laser ranging measurement corrections for TOPEX/Poseidon, Advances in Space Research, Vol. 71, Issue 1, 975–996, DOI: https://doi.org/10.1016/j.asr.2022.09.002.
  32. Zhang H., Long M., Deng H., Cheng S., Wu Z., Zhang Z., Zhang A., Sun J. (2021) Developments of Space Debris Laser Ranging Technology Including the Applications of Picosecond Lasers, Applied Sciences, Vol. 11, No. 10080, DOI: https://doi.org/10.3390/app112110080.
  33. Zhang Z.P., Yang F.M., Zhang H.F., Wu Z.B., Chen J.P., Li P., Meng W.D. (2012) The use of laser ranging to measure space debris, Research in Astronomy and Astrophysics, Vol. 12, Issue 2, 212–218, DOI: https://doi.org/10.1088/1674-4527/12/2/009.
  34. Zhongping Z., Huarong D., Kai T., Zhibo W., Haifeng Z. (2017) Development of Laser Measurement to Space Debris at Shanghai SLR Station, Proceedings of the 7th European Space Debris Conference, Paper No. 255, ESA/ESOC, Darmstadt, Germany 2017, https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/255/SDC7-paper255.pdf.
  35. Vallado A. D., Cefola J. P. (2012) Two-line element sets - Practice and use, Proccedings of the 63th International Astronautical Congress, Naples, Italy, Paper IAC-12-A6.6.11.
  36. DISCOS database, March 1, 2022, https://discosweb.esoc.esa.int/.
  37. SPACE DEBRIS OFFICE, European Space Agency, Annual Space Environment Report Publication GEN-DB-LOG-00288-OPS-SD, 2022 https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf.
  38. SPACE DEBRIS USER PORTAL, Space Debris Office at European Space Operations Centre/European Space Agency, August 11, 2022, https://sdup.esoc.esa.int/discosweb/statistics/.
  39. SPACETRACK database, March 7, 2023, https://www.space-track.org/.
DOI: https://doi.org/10.2478/arsa-2023-0010 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 256 - 277
Submitted on: Oct 27, 2023
|
Accepted on: Nov 24, 2023
|
Published on: Jan 19, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Paweł Lejba, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.