References
- Akaike H. (1971) Autoregressive model fitting for control, Annals of the Institute of Statistical Mathematics, Vol. 23, No. 1, 163–180.
- Akyilmaz O, Kutterer H. (2004) Prediction of Earth rotation parameters by fuzzy inference systems, Journal of Geodesy, Vol. 78, No. 1, 82–93.
- Bizouard C, Lambert S, Gattano C, et al. (2019) The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014, Journal of Geodesy, Vol. 93, No. 5, 621–633.
- Chin T, Gross R, Dickey J. (2004) Modeling and forecast of the polar motion excitation functions for short-term polar motion prediction, Journal of Geodesy, Vol. 78, No. 6, 343–353.
- Dick W, Thaller D. (2020) IERS annual report 2018, International Earth Rotation and Reference Systems Service, Central Bureau, Frankfurt am Main.
- Dill R, Dobslaw H. (2010) Short-term polar motion forecasts from Earth system modeling data, Journal of Geodesy, Vol. 84, No. 9, 529–536.
- Dill R, Dobslaw H, Thomas M. (2019) Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere, Journal of Geodesy, Vol. 93, No. 3, 287–295.
- Dobslaw H, Dill R. (2017) Predicting Earth rotation variations from global forecasts of atmosphere-hydrosphere dynamics, Advances in Space Research, Vol. 61, No. 4, 1047–1054.
- Gambis D, Luzum B. (2011) Earth rotation monitoring, UT1determination and prediction, Metrologia, Vol. 48, No. 4, S165.
- Guo J, Li Y, Dai C, et al. (2013) A technique to improve the accuracy of Earth orientation prediction algorithms based on least squares extrapolation, Journal of Geodynamics, Vol. 70, No. 10, 36–48.
- IERS Annual Report 2018. Edited by Wolfgang R. Dick and Daniela Thaller. International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2020. 207 p., ISBN 978-3-86482-136-3 (print version)
- Jin X, Liu X, Guo J. et al. (2021) Analysis and prediction of polar motion using MSSA method, Earth, Planets and Space, Vol. 73, No. 1, 1–13.
- Kalarus M, Schuh H, Kosek W, et al. (2010) Achievements of the Earth orientation parameters prediction comparison campaign, Journal of Geodesy, Vol. 84, No. 10, 587–596.
- Kosek W, McCarthy D, Luzum B. (1998) Possible improvement of Earth orientation forecast using autocovariance prediction procedures, Journal of Geodesy, Vol. 72, No. 4, 189–199.
- Kosek W, McCarthy D, Luzum B. (2001). El Niño impact on polar motion prediction errors, Studia Geophysica et Geodaetica, Vol. 45, No. 4, 347–361.
- Love I, Zicchino L. (2006) Financial development and dynamic investment behavior: evidence from panel VAR, The Quarterly Review of Economics and Finance, Vol. 46, No. 2, 190–210.
- Modiri S, Belda S, Heinkelmann R, et al. (2018) Polar motion prediction using the combination of SSA and copula-based analysis, Earth, Planets and Space, Vol. 70, No. 1, 1–18.
- Schuh H, Nagel S, Seitz T. (2001) Linear drift and periodic variations observed in long time series of polar motion, Journal of Geodesy, Vol. 74, No. 10, 701–710.
- Schuh H, Ulrich M, Egger D, et al. (2002) Prediction of Earth orientation parameters by artificial neural networks, Journal of Geodesy, Vol. 76, No. 5, 247–258.
- Shen Y, Guo J, Liu X, et al (2017) One hybrid model combining singular spectrum analysis and LS + ARMA for polar motion prediction, Advances in Space Research, Vol. 59, No. 2, 513–523.
- Su X, Liu L, Houtse H, et al. (2014) Long-term polar motion prediction using normal time–frequency transform, Journal of Geodesy, Vol. 88, No. 2, 145–155.
- Sun Z, Xu T (2012) Prediction of Earth rotation parameters based on improved weighted least squares and autoregressive model Geodesy and Geodynamics, Vol. 3, No. 3, 57–64.
- Sun Z, Xu T, Jiang C, et al. (2019) An improved prediction algorithm for Earth’ s polar motion with considering the retrograde annual and semi-annual wobbles based on least squares and autoregressive model, Acta Geodaetica et Geophysica, Vol. 54, No. 4, 499–511.
- Wang L, Miao W, Wu F. (2022) A new polar motion prediction method combined with the difference between polar motion series Geodesy and Geodynamics, Vol. 13, No. 6, 564–572.
- Wooden W, van Dam T, Kosek W. (2006) IERS Working Group on prediction plans and activities, EOS Trans. AGU, 87(52), In AGU Fall Meeting Abstracts, pp. G43A–0988
- Wu F, Chang G, Deng K, et al. (2019) Selecting data for autoregressive modeling in polar motion prediction, Acta Geodaetica et Geophysica, Vol. 54, No. 4, 557–566.
- Wu F, Deng K, Chang G, et al. (2018) The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters, Acta Geodaetica et Geophysica, Vol. 53, No. 2, 247–257.
- Wu F, Liu Z, Deng K, et al. (2021) A polar motion prediction method considering the polar coordinates, Advances in Space Research, Vol. 68, No. 3, 1318–1328.
- Xu X, Zhou Y. (2015) EOP prediction using least square fitting and autoregressive filter over optimized data intervals, Advances in Space Research, Vol. 56, No. 10, 2248–2253.
- Xu X, Zhou Y, Liao X. (2012) Short-term Earth orientation parameters predictions by combination of the least-squares, AR model and Kalman filter, Journal of Geodynamics, Vol. 62, No. 12, 83–86.
- Yang Y, Nie W, Xu T, et al. (2022) Earth orientation parameters prediction based on the hybrid SSA+LS+SVM model, Measurement Science and Technology, Vol. 33, No. 12, 125011.
- Zhang H, Wang Q, Zhu J, Zhang X. Application of CLS+AR model polar motion to prediction based on time-varying parameters correction of Chandler wobble, Geomatics and Information Science of Wuhan University, Vol. 37, No. 3, 286–289.
- Zhao D, Lei Y. (2019) Possible enhancement of Earth’ s polar motion predictions using a wavelet-based preprocessing procedure, Studia Geophysica et Geodaetica, Vol. 63, No. 1, 83–94.
- Zhao D, Lei Y. (2020) A technique to reduce the edge effect in least squares extrapolation for enhanced Earth orientation prediction., Studia Geophysica et Geodaetica, Vol. 64, No. 3, 293–305.