Have a personal or library account? Click to login
Prediction of Earth Rotation Parameters with the Use of Rapid Products from IGS, Code and GFZ Data Centres Using Arima and Kriging – A Comparison Cover

Prediction of Earth Rotation Parameters with the Use of Rapid Products from IGS, Code and GFZ Data Centres Using Arima and Kriging – A Comparison

Open Access
|Jan 2023

References

  1. Akaike H., (1998) Information Theory and an Extension of the Maximum Likelihood Principle, In: Parzen, E., Tanabe, K., Kitagawa, G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics, Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1694-0_15
  2. Akyilmaz O., Kutterer H., Shum C., Ayan T., (2011) Fuzzy-wavelet based prediction of earth rotation parameters, Applied Soft Computing, 11(1):837–841, https://doi.org/10.1016/j.asoc.2010.01.003
  3. Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control, Holden Day San Francisco
  4. Cressie N.A.C. (1993) Statistics for spatial data, John Wiley & Sons, New York
  5. Dick W. R. and Thaller D. (eds.) IERS Annual Report 2018 (2020) International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlagdes Bundesamts für Kartographie und Geodüsie, 207 p., ISBN 978-3-86482-136-3
  6. Dill, R., Dobslaw, H., Thomas, M. (2019): Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. - Journal of Geodesy, 93, 3, pp. 287—295. doi: http://doi.org/10.1007/s00190-018-1158-7
  7. Gambis D, Luzum B., (2011) Earth rotation monitoring, UT1 determination and prediction, Metrologia; 48:165-70
  8. Kalarus M., Schuh H., Kosek W., Akyilmaz O., Bizouard Ch., Gambis D., Gross, B R.. Jovanovi′c, Kumakshev S., Kutterer H., Mendes Cerveira P. J., Pasynok S., Zotov L., (2010) Achievements of the Earth Orientation Parameters prediction comparison campaign, Journal of Geodesy, 84:587–596
  9. Kosek W., Kalarus M., Niedzielski T., (2007) Forecasting Of the Earth Orientation Parameters - Comparison of Different Algorithms, Journées Systèmes de Référence Spatio-temporels, Observatoire de Paris, 17-19 September 2007
  10. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., Shin, Y. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics. 54 (1–3): 159–178, https://doi.org/10.1016/0304-4076(92)90104-Y
  11. Lei Y., Guo M., Cai. H, Hu D., Zhao D., (2015) Prediction of Length-of-day Using Gaussian Process Regression, The Journal of Navigation, 68:563–575, https://doi.org/10.1017/S0373463314000927
  12. Liao D.C., Wang Q.J., Zhou Y.H., Liao X.H., Huang C.L., (2012) Long-term prediction of the Earth Orientation Parameters by the artificial neural network technique, Journal of Geodynamics Volume 62, Pages 87-92, ISSN 0264-3707, https://doi.org/10.1016/j.jog.2011.12.004
  13. Ligas, M., (2022), Comparison of kriging and least-squares collocation – Revisited, Journal of Applied Geodesy, vol. 16, no. 3, 2022, pp. 217-227. https://doi.org/10.1515/jag-2021-0032
  14. Linnet. K. (1990). Estimation of the linear relationship between the measurements of two methods with proportional errors. Statist. Med.. 9: 1463-1473. https://doi.org/10.1002/sim.4780091210
  15. Luo, J., Chen, W., Ray, J., Li J., (2022), Short-Term Polar Motion Forecast Based on the Holt-Winters Algorithm and Angular Momenta of Global Surficial Geophysical Fluids. Surv Geophys. https://doi.org/10.1007/s10712-022-09733-0
  16. Michalczak M., Ligas M., (2021) Kriging-based prediction of the Earth’s pole coordinates, Journal of Applied Geodesy, vol. 15, no. 3, pp. 233-241, https://doi.org/10.1515/jag-2021-0007
  17. Michalczak M., Ligas M. (2022) The (ultra) short term prediction of length-of-day using kriging, Advances in Space Research, https://doi.org/10.1016/j.asr.2022.05.007
  18. Modiri S., Belda S., Hoseini M., Heinkelmann R., Ferrándiz J. M., Schuh H., (2020) A new hybrid method to improve the ultra-short-term prediction of LOD, Journal of Geodesy 94:23
  19. Nastula J., Chin T. M., Gross R., Śliwińska J., Wińska M., (2020) Smoothing and predicting celestial pole offsets using a Kalman filter and smoother, Journal of Geodesy 94:29
  20. Niedzielski T., Kosek W., (2008) Prediction of UT1–UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods, J Geod 82:83–92
  21. Okhotnikov G., Golyandina N. (2019) EOP Time Series Prediction Using Singular Spectrum Analysis″ RWTH Aahen University
  22. Passing H. Bablok W.. (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry. Part I. J Clin Chem Clin Biochem. Nov;21(11):709-20. doi: 10.1515/cclm.1983.21.11.709. PMID: 6655447
  23. Petit G and Luzum B (eds.). IERS Conventions (2010), IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodüsie. 179 pp., ISBN 3-89888-989-6
  24. Schuh H., Ulrich M., Egger D., Müller J., Schwegmann W. (2002) Prediction of Earth Orientation Parameters by Artificial Neural Networks, Journal of Geodesy, 76(5), 247–258, https://doi.org/10.1007/s00190-001-0242-5
  25. Wu F., Chang G., Deng K., (2019) One-step method for predicting LOD parameters based on LS+AR model″, Journal of Spatial Science, 66:2, 317-328, https://doi.org/10.1080/14498596
  26. Zotov, Leonid & Bizouard, Ch. (2018). Escargot Effect and the Chandler Wobble Excitation, Journal of Physics: Conference Series, 955, 012033, doi: 10.1088/1742-6596/955/1/012033
DOI: https://doi.org/10.2478/arsa-2022-0024 | Journal eISSN: 2083-6104 | Journal ISSN: 1509-3859
Language: English
Page range: 274 - 289
Submitted on: Jul 18, 2022
Accepted on: Oct 6, 2022
Published on: Jan 5, 2023
Published by: Polish Academy of Sciences, Space Research Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Maciej Michalczak, Marcin Ligas, Jacek Kudrys, published by Polish Academy of Sciences, Space Research Centre
This work is licensed under the Creative Commons Attribution 4.0 License.