References
- Bajić B., Vučurović D., Vasić Đ., Jevtić-Mučibabić R., Dodić S. (2023). Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods, 12: 107.
- Becker E.W. (2007). Micro-algae as a source of protein. Biotechnol. Adv., 25:207–210.
- Belhadj Slimen I., Yerou H., Ben Larbi M., M’Hamdi N., Najar T. (2023). Insects as an alternative protein source for poultry nutrition: a review. Front. Vet. Sci., 10.
- Bellezza Oddon S., Biasato I., Imarisio A., Pipan M., Dekleva D., Colombino E., Capucchio M.T., Meneguz M., Bergagna S., Barbero R., Gariglio M., Dabbou S., Fiorilla E., Gasco L., Schiavone A. (2021). Black soldier fly and yellow mealworm live larvae for broiler chickens: Effects on bird performance and health status. J. Anim. Physiol. Anim. Nutr. 105 Suppl., 1: 10–18.
- Bello A., Dersjant-Li Y., Korver D.R. (2020). Effects of dietary calcium and available phosphorus levels and phytase supplementation on performance, bone mineral density, and serum biochemical bone markers in aged white egg-laying hens. Poult. Sci., 99: 5792–5801.
- Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. (2013). Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf., 12: 296–313.
- Cadinu L.A., Barra P., Torre F., Delogu F., Madau F.A. (2020). Insect Rearing: Potential, Challenges, and Circularity. Sustainability, 12: 4567.
- Chodová D., Tůmová E. (2020). Insects in chicken nutrition. A review. Agron. Res., 8(2): 376–392.
- Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance). (2009).
- da-Silva W.C., Silva É.B.R. da Silva J.A.R. da Martorano L.G., Belo T.S., Sousa C.E.L., Camargo-Júnior R.N.C., Andrade R.L., Santos A.G. de S., Carvalho K.C. de Lobato A. dos S.M., Rodrigues T.C.G. de C., Araújo C.V. de, Lima J.S. de, Neves K.A.L., Silva L.K.X., Lourenço-Júnior J. de B. (2024). Nutritional Value of the Larvae of the Black Soldier Fly (Hermetia illucens) and the House Fly (Musca domestica) as a Food Alternative for Farm Animals—A Systematic Review. Insects, 15: 619.
- De Marco M., Martínez S., Hernandez F., Madrid J., Gai F., Rotolo L., Belforti M., Bergero D., Katz H., Dabbou S., Kovitvadhi A., Zoccarato I., Gasco L., Schiavone A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol., 209: 211–218.
- de Souza Vilela J., Andronicos N.M., Kolakshyapati M., Hilliar M., Sibanda T.Z., Andrew N.R., Swick R.A., Wilkinson S., Ruhnke I. (2021). Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. Anim. Nutr., 7: 695–706.
- Dijkslag M.A., Kwakkel R.P., Martin-Chaves E., Alfonso-Carrillo C., Walvoort C., Navarro-Villa A. (2021). The effects of dietary calcium and phosphorus level, and feed form during rearing on growth performance, bone traits and egg production in brown egg-type pullets from 0 to 32 weeks of age. Poult. Sci., 100: 101130.
- Dumont E.R. (2010). Bone density and the lightweight skeletons of birds. Proc. Biol. Sci., 277: 2193–2198.
- Ellawidana D., Mutucumarana R.K., H.a, D.R., Magamage M.S. (2023). Nutritional Composition and Apparent Metabolizable Energy (AME) Value of Black Soldier Fly Larvae (Hermetia illucens L.) Full-Fat Meal for Broiler Chickens. Turk. J. Agric. - Food Sci. Technol., 11: 1825–1833.
- Fu C., Cheema W.A., Mobashar M., Shah A.A., Alqahtani M.M. (2024). Insects as Sustainable Feed: Enhancing Animal Nutrition and Reducing Livestock Environmental Impression. J. Anim. Physiol. Anim. Nutr., 109: 280-290.
- Hubert A. (2019). Industrial insect production as an alternative source of animal protein. C. R. Biol., Insects: Friends, foes, and models / Insectes : amis, ennemis et modèles, 342: 276–277.
- ISO 6869:2000 [WWW Document]. (2000). ISO. URL https://www.iso.org/standard/33707.html (accessed 7.1.25).
- Janssen R.H., Vincken J.-P., van den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278.
- Khan S., Shi X., Cai R., Shuai Z., Mao W., Khan I.M., Swelum A.A., Guo J. (2024). Effect of black soldier fly (Hermetia illucens) larvae meal and oil on the performance, biochemical profile, intestinal health and gut microbial dynamics in laying hens. Poult. Sci., 103: 104460.
- Khan S.H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res., 46: 1144–1157.
- Kim W.K., Bloomfield S.A., Sugiyama, T., Ricke S.C. (2012). Concepts and methods for understanding bone metabolism in laying hens. Worlds Poult. Sci. J., 68: 71–82.
- Liu D., Veit H., Denbow D. (2004). Effects of long-term dietary lipids on mature bone mineral content, collagen, crosslinks, and prostaglandin E2 production in Japanese quail. Poult. Sci., 83(11): 1876–83
- Liu G., Kim W. (2023). The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Anim. Open Access J., 13(18): 2949
- Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.
- Moniello G., Ariano A., Panettieri V., Tulli F., Olivotto I., Messina M., Randazzo B., Severino L., Piccolo G., Musco N., Addeo N.F., Hassoun G., Bovera F. (2019). Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens Fed Different Levels of a Hermetia illucens Larvae Meal and Toxic Elements Content of the Insect Meal and Diets. Animals, 9: 86.
- Muszyński S., Tomaszewska E., Dobrowolski P., Kwiecień M., Wiącek D., Świetlicka I., Skibińska M., Szymańska-Chargot M., Orzeł J., Świetlicki M., Arczewska M., Szymanek M., Zhyla M., Hułas-Stasiak M., Rudyk H., Tomczyk-Warunek A. (2018). Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source. PloS One, 13(12): e0208921.
- Novodworski J., Castilha L.D., Silva A.A. (2023). Insect meal in poultry feed: a potential protein source. Acta Sci. Anim. Sci., 45: e60317.
- Osiak-Wicha C., Tomaszewska E., Muszyński S., Dobrowolski P., Andres K., Schwarz T., Świetlicki M., Mielnik-Błaszczak M., Arciszewski M.B. (2023). Developmental changes in tibia and humerus of goose: morphometric, densitometric, and mechanical analysis. animal, 17: 100960.
- Osiak-Wicha C., Tomaszewska E., Muszyński S., Flis M., Świetlicki M., Arciszewski M.B. (2024). Comparative Analysis of Morphometric, Densitometric, and Mechanical Properties of Skeletal Locomotor Elements in Three Duck Species (Anatidae: Anatinae). Animals, 14: 2191.
- Paschalis E., Tatakis D., Robins S., Fratzl P., Manjubala I., Zoehrer R., Gamsjaeger S., Buchinger B., Roschger A., Phipps R., Boskey A., Dall’Ara E., Varga P., Zysset P., Klaushofer K., Roschger P. (2011). Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone, 49: 1232–1241.
- Popova T.L., Petkov, E., Ignatova M. (2020). Effect of Black Soldier Fly (Hermetia illucens) meals on the meat quality in broilers. Agric. Food Sci., 29: 177–188.
- Rath N.C., Huff G.R., Huff W.E., Balog J.M. (2000). Factors regulating bone maturity and strength in poultry. Poult. Sci., 79: 1024–1032.
- Rumpold B.A., Schlüter O.K. (2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.
- Salahuddin M., Abdel-Wareth A.A.A., Hiramatsu K., Tomberlin J.K., Luza D., Lohakare J. (2024). Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae. Animals, 14: 510.
- Shah A.A., Totakul P., Matra M., Cherdthong A., Hanboonsong Y., Wanapat M. (2022). Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci., 35: 317–331.
- Sogari G., Amato M., Biasato I., Chiesa S., Gasco L. (2019). The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals, 9: 119.
- Tabata E., Kashimura A., Wakita S., Ohno M., Sakaguchi M., Sugahara Y., Kino Y., Maťoška V., Bauer P., Oyama F. (2017). Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep., 7: 6662.
- Tatara M.R., Śliwa E., Krupski W., Brodzki A., Pasternak K. (2006). Ornithine alpha-ketoglutarate increases mineralization and mechanical properties of tibia in turkeys. Bone, 39: 100–105.
- van Huis A. (2013). Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol., 58: 563–583.
- Veldkamp T., Bosch G. (2015). Insects: a protein-rich feed ingredient in pig and poultry diets. Anim. Front., 5: 45–50.
- Whitehead C.C. (2004). Overview of bone biology in the egg-laying hen. Poult. Sci., 83: 193–199.
- Whiteside M.A., Sage R., Madden J.R. (2015). Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology. J. Anim. Ecol., 84: 1480–1489.
- Wise D.R., and Ewins A. (1980). The effects of dietary calcium concentration on pheasant breeder performance. Br. Poult. Sci., 21: 229–232.
- Yuan Y.V., Kitts D.D. (1992). Effect of dietary calcium intake and protein source on calcium utilization and bone biomechanics in the spontaneously hypertensive rat. J. Nutr. Biochem., 3: 452–460.