Have a personal or library account? Click to login
Emerging applications of nanotechnology in livestock: Updates and perspectives Cover

Emerging applications of nanotechnology in livestock: Updates and perspectives

Open Access
|Aug 2025

References

  1. Abdelkader H., Hussain S.A., Abdullah N., Kmaruddin S. (2018). Review on micro-encapsulation with chitosan for pharmaceuticals applications. MOJ Curr. Res. Rev., 1: 77–84.
  2. Abedin S.N., Baruah A., Baruah K.K., Kadirvel G., Katiyar R., Khargharia G., Bora A., Dutta D.J., Sinha S., Tamuly S., Phookan A., Deori S. (2023). In Vitro and In Vivo Studies on the Efficacy of Zinc-Oxide and Selenium Nanoparticle in Cryopreserved Goat (Capra hircus) Spermatozoa. Biol. Trace Elem. Res., 201: 4726–4745.
  3. Ahmad S.U., Li B., Sun J., Arbab S., Dong Z., Cheng F., Zhou X., Mahfuz S., Zhang J. (2021). Recent advances in microencapsulation of drugs for veterinary applications. J. Vet. Pharmacol. Ther., 44: 298–312.
  4. Ahmed T.A., Aljaeid B.M. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 10: 483–507.
  5. Albuquerque J., Casal S., Páscoa R.N.M.J., Van Dorpe I., Fonseca A.J.M., Cabrita A.R.J., Neves A.R., Reis S. (2020). Applying nanotechnology to increase the rumen protection of amino acids in dairy cows. Sci. Rep., 10: 6830.
  6. Alipio M., Villena M.L. (2023). Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health, 27: 100369.
  7. Almeida C.F., Faria M., Carvalho J., Pinho E. (2024). Contribution of nanotechnology to greater efficiency in animal nutrition and production. J. Anim. Physiol. Anim. Nutr., 108: 1430–1452.
  8. Al-Nemrawi N.K., Darweesh R.S., Al-Shriem L.A., Al-Qawasmi F.S., Emran S.O., Khafajah A.S., Abu-Dalo M.A. (2022). Polymeric nanoparticles for inhaled vaccines. Polymers, 14: 4450.
  9. Ambrosio N., Voci S., Gagliardi A., Palma E., Fresta M., Cosco D. (2022). Application of biocompatible drug delivery nanosystems for the treatment of naturally occurring cancer in dogs. J. Funct. Biomater., 13: 116.
  10. Arshad R., Gulshad L., Haq I.U., Farooq M.A., Al-Farga A., Siddique R., Manzoor M.F., Karrar E. (2021). Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr., 9: 3354–3361.
  11. Ashizawa K. (2019). Nanosize particle analysis by dynamic light scattering (DLS). Yakugaku Zasshi, 139: 237.
  12. Attia M.A., Essa E.A., Elebyary T.T., Faheem A.M., Elkordy A.A. (2021). Brief on recent application of liposomal vaccines for lower respiratory tract viral infections: from influenza to COVID-19 vaccines. Pharmaceuticals, 14: 1173.
  13. Attia M.S., El Nasharty M.A., Rabee M.M., Mohammed N.N., Mohamed M.M., Hosny S.I., Abd El-Wahab A.G., Mahmoud A.G., Abd Elmaged E.M., Afify H.G., Abdel-Mottaleb M.S.A. (2024). Ionotropically cross-linked polymeric nanoparticles for drug delivery. In Ionotropic Cross-Linking of Biopolymers, pp. 301–353. Elsevier.
  14. Avinash B., Venu R., Prasad T.N., Alpha Raj M., Srinivasa Rao K., Srilatha C. (2017). Synthesis and characterisation of neem leaf extract, 2,3-dehydrosalanol and quercetin dihydrate mediated silver nanoparticles for therapeutic applications. IET Nanobiotechnol., 11: 383–389.
  15. Baholet D., Skalickova S., Batik A., Malyugina S., Skladanka J., Horky P. (2022). Importance of zinc nanoparticles for the intestinal microbiome of weaned piglets. Front. Vet. Sci., 9: 852085.
  16. Bashir S.M., Ahmed Rather G., Patrício A., Haq Z., Sheikh A.A., Shah M.Z.U.H., Singh H., Khan A.A., Imtiyaz S., Ahmad S.B., Nabi S., Rakhshan R., Hassan S., Fonte P. (2022). Chitosan nanoparticles: a versatile platform for biomedical applications. Materials, 15: 6521.
  17. Broza Y.Y., Zhou X., Yuan M., Qu D., Zheng Y., Vishinkin R., Khatib M., Wu W., Haick H. (2019). Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev., 119: 11761–11817.
  18. Bruckmann F.D.S., Nunes F.B., Salles T.D.R., Franco C., Cadoná F.C., Bohn Rhoden C.R. (2022). Biological applications of silica-based nanoparticles. Magnetochemistry, 8: 131.
  19. Carvalho S.G., Silvestre A.L.P., Martins Dos Santos A., Fonseca-Santos B., Rodrigues W.D., Palmira Daflon Gremião M., Chorilli M., Villanova J.C.O. (2021). Polymeric-based drug delivery systems for veterinary use: state of the art. Int. J. Pharm., 604: 120756.
  20. Chaudhary S.A., Patel D.M., Patel J.K., Patel D.H. (2021). Solvent emulsification evaporation and solvent emulsification diffusion techniques for nanoparticles. In Emerging Technologies for Nanoparticle Manufacturing, pp. 287–300. Springer.
  21. Chen S., Miao Q., Liu Y., Xiao Q., Lin Y., Yang Y., Guo F. (2023). Construction and functional evaluation of oral long-acting insulin hydrogel microparticles based on physical and chemical double crosslinking. Int. J. Biol. Macromol., 253: 126915.
  22. Cheng X., Tsao C., Sylvia V.L., Cornet D., Nicolella D.P., Bredbenner T.L., Christy R.J. (2014). Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomater., 10: 1360–1369.
  23. Chettupalli A.K., Srivani A., Sarvani P., Unnisa A. (2024). Nanoparticles and their prospective solicitations in veterinary medicine. In Sustainable Agriculture Reviews: Animal Biotechnology for Livestock Production 4, pp. 229–262. Springer.
  24. Danchuk O., Levchenko A., da Silva Mesquita R., Danchuk V., Cengiz S., Cengiz M., Grafov A. (2023). Meeting contemporary challenges: development of nanomaterials for veterinary medicine. Pharmaceutics, 15: 2326.
  25. Das K., Madhusoodan A.P., Mili B., Kumar A., Saxena A.C., Kumar K., Sarkar M., Singh P., Srivastava S., Bag S. (2017b). Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells. Int. J. Nanomed., 12: 3235–3252.
  26. Das K., Mili B., Madhusoodan A.P., Saxena A.C., Kumar A., Singh P., Verma M.R., Sarkar M., Bag S. (2017a). Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue Cell, 49: 270–274.
  27. Dey S., Majumdar S., Hasnain M.S., Nayak A.K. (2022). Cross-linking of chitosan in drug delivery. In Chitosan in Drug Delivery, pp. 277–299. Academic Press.
  28. Dong Y., Wu X., Chen X., Zhou P., Xu F., Liang W. (2021). Nanotechnology shaping stem cell therapy: recent advances, application, challenges, and future outlook. Biomed. Pharmacother., 137: 111236.
  29. Dykman L.A. (2020). Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines, 19: 465–477.
  30. Ebenebe C.I., Iheukwumere E.I., Ezenyilimba B.N., Oyisi M., Ekugba C.U., Nwankwo C.A., Ikeogu C.F. (2024). Nanotechnology in livestock production: a review. e-Proc. Fac. Agric. Int. Conf., pp. 262–266.
  31. Falsafi S.R., Rostamabadi H., Assadpour E., Jafari S.M. (2020). Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci., 280: 102166.
  32. Filipczak N., Yalamarty S.S.K., Li X., Parveen F., Torchilin V. (2021). Developments in treatment methodologies using dendrimers for infectious diseases. Molecules, 26: 3304.
  33. Folliero V., Zannella C., Chianese A., Stelitano D., Ambrosino A., De Filippis A., Galdiero M., Franci G., Galdiero M. (2021). Application of dendrimers for treating parasitic diseases. Pharmaceutics, 13: 343.
  34. Gamedze N.P., Mthiyane D.M.N., Kgaswane K.S., Mavengahama S., Onwudiwe D.C. (2024). Growth, physiological responses, and meat quality of feedlot-finished Bonsmara steers offered unprocessed Mucuna pruriens utilis seed meal with or without conventional and green zinc oxide nanoparticles. Trop. Anim. Health Prod., 56: 1–13.
  35. Gelaye Y. (2024). Application of nanotechnology in animal nutrition: bibliographic review. Cogent Food Agric., 10: 2290308.
  36. Ghasemi M.A.G., Hamishehkar H., Javadi A., Homayouni-Rad A., Jafarizadeh-Malmiri H. (2024). Natural-based edible nanocomposite coating for beef meat packaging. Food Chem., 435: 137582.
  37. Hanafy M.H. (2018). Myconanotechnology in veterinary sector: status quo and future perspectives. Int. J. Vet. Sci. Med., 6: 270–273.
  38. Harish V., Tewari D., Gaur M., Yadav A.B., Swaroop S., Bechelany M., Barhoum A. (2022). Review on nanoparticles and nanostructured materials: bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 12: 457.
  39. Hashem N.M., Gonzalez-Bulnes A. (2021). Nanotechnology and reproductive management of farm animals: challenges and advances. Animals, 11: 1932.
  40. Hassan A.A., Mansour M.K., El Hamaky A.M., El Ahl R.M.S., Oraby N.H. (2020). Nanomaterials and nanocomposite applications in veterinary medicine. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, pp. 583–638. Elsevier.
  41. Hernández Á.P., Iglesias-Anciones L., Vaquero-González J.J., Piñol R., Criado J.J., Rodriguez E., Juanes-Velasco P., García-Vaquero M.L., Arias-Hidalgo C., Orfao A., Millán Á. (2023). Enhancement of tumor cell immunogenicity and antitumor properties derived from platinum-conjugated iron nanoparticles. Cancers, 15: 3204.
  42. Hozyen H.F., Ibrahim E.S., Khairy E.A., El-Dek S.I. (2019). Enhanced antibacterial activity of capped zinc oxide nanoparticles: a step towards the control of clinical bovine mastitis. Vet. World, 12: 1225.
  43. Ingrole R.S.J., Tao W., Joshi G., Gill H.S. (2021). M2e conjugated gold nanoparticle influenza vaccine displays thermal stability at elevated temperatures and confers protection to ferrets. Vaccine, 39: 4800–4809.
  44. Iqbal M., Niazi M.B.K., Jahan Z., Ahmad T., Hussain Z., Sher F. (2022). Fabrication and characterization of carbon-based nanocomposite membranes for packaging application. Polym. Bull., 79: 5019–5040.
  45. Jain A.K., Thareja S. (2019). In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 47: 524–539.
  46. Kabiri M., Bolourian H., Dehghan S., Tafaghodi M. (2021). The dry powder formulation of mixed cross-linked dextran microspheres and tetanus toxoid-loaded trimethyl chitosan nanospheres as a potent adjuvant for nasal delivery system. Iran. J. Basic Med. Sci., 24: 116–122.
  47. Kalaiselvan E., Maiti S.K., Shivaramu S., Banu S.A., Sharun K., Mohan D., Palakkara S., Bag S., Sahoo M., Ramalingam S., Hescheler J. (2024). Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater., 15: 66.
  48. Kalinska A., Jaworski S., Wierzbicki M., Gołębiewski M. (2019). Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention? Int. J. Mol. Sci., 20: 1672.
  49. Khan K.U., Minhas M.U., Badshah S.F., Suhail M., Ahmad A., Ijaz S. (2022). Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci., 291: 120301.
  50. Khazaei M., Hosseini M.S., Haghighi A.M., Misaghi M. (2023). Nanosensors and their applications in early diagnosis of cancer. Sens. Bio-Sens. Res., 39: 100569.
  51. Kim Y.S., Son A., Kim J., Kwon S.B., Kim M.H., Kim P., Yu J.E. (2018). Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front. Immunol., 9: 1093.
  52. Kisakova L.A., Apartsin E.K., Nizolenko L.F., Karpenko L.I. (2023). Dendrimer-mediated delivery of DNA and RNA vaccines. Pharmaceutics, 15: 1106.
  53. Klontzas M.E., Kakkos G.A., Papadakis G.Z., Marias K., Karantanas A.H. (2021). Advanced clinical imaging for the evaluation of stem cell-based therapies. Expert Opin. Biol. Ther., 21: 1253–1264.
  54. Krishnan S., Thirunavukarasu A., Jha N.K., Gahtori R., Roy A.S., Dholpuria S., Kesari K.K., Singh S.K., Dua K., Gupta P.K. (2021). Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update. J. Nanopart. Res., 23: 1–16.
  55. Kumar R., Chowdhury A., Mamatha D., Rose M.K., Ghosh M. (2024). Nanotechnology in protozoan livestock disease diagnosis. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 177–194. Springer.
  56. Kuru C.İ., Ulucan-Karnak F., Dayıoğlu B., Şahinler M., Şendemir A., Akgöl S. (2024). Affinity-based magnetic nanoparticle development for cancer stem cell isolation. Polymers, 16: 196.
  57. Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M., et al. (2021). Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals, 11: 1884.
  58. Lee L.C., Gadegaard N., De Andrés M.C., Turner L.A., Burgess K.V., Yarwood S.J., Wells J., Salmeron-Sanchez M., Meek D., Oreffo R.O., Dalby M.J. (2017). Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials, 116: 10–20.
  59. Li D., Fu D., Kang H., Rong G., Jin Z., Wang X., Zhao K. (2017). Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr. Drug Deliv., 14: 27–35.
  60. Liao J., Peng H., Liu C., Li D., Yin Y., Lu B., Zheng H., Wang Q. (2021). Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. Mater. Sci. Eng. C, 118: 111527.
  61. Lin L.C.W., Huang C.Y., Yao B.Y., Lin J.C., Agrawal A., Algaissi A., Chang Y.C. (2019). Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against Middle East respiratory syndrome coronavirus. Adv. Funct. Mater., 29: 1807616.
  62. Liu D., Hong Y., Li Y., Hu C., Yip T.C., Yu W.K., Zhu Y., Fong C.C., Wang W., Au S.K., Wang S., Yang M. (2020). Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics, 10: 1181–1196.
  63. Liu H., Tang W., Li C., Lv P., Wang Z., Liu Y., Zhang C., Bao Y., Chen H., Meng X., Song Y. (2015). CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Res. Lett., 10: 265.
  64. Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127.
  65. Liu J., Liu Z., Pang Y., Zhou H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnol., 20: 127.
  66. Ma X., Luan Z., Li J. (2023). Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int. J. Nanomed., pp. 143–182.
  67. Madhusoodan A.P., Das K., Mili B., Kumar K., Kumar A., Saxena A.C., Singh P., Dutt T., Bag S. (2019). In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. Biotechnol. Rep., 24: e00387.
  68. Malik S., Muhammad K., Waheed Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28: 6624.
  69. Malyugina S., Skalickova S., Skladanka J., Slama P., Horky P. (2021). Biogenic selenium nanoparticles in animal nutrition: a review. Agriculture, 11: 1244.
  70. Manessis G., Gelasakis A.I., Bossis I. (2022). Point-of-care diagnostics for farm animal diseases: from biosensors to integrated lab-on-chip devices. Biosensors, 12: 455.
  71. Mansour H., Aboamer A.A., Agamy R., Ali S.M., Mohamed M.Y., Abd El-Aziz M.E., et al. (2025). Effect of zinc oxide and selenium nanoparticles on milk production efficiency and related gene expression in Egyptian Baladi goats. Egypt. J. Chem., 68: 445–454.
  72. Mehanna M.M., Mneimneh A.T. (2021). Formulation and applications of lipid-based nanovehicles: spotlight on self-emulsifying systems. Adv. Pharm. Bull., 11: 56.
  73. Mili B., Das K., Kumar A., Saxena A.C., Singh P., Ghosh S., Bag S. (2018). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J. Mater. Sci. Mater. Med., 29: 1–13.
  74. Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 20: 101–124.
  75. Mondal T., Das K., Singh P., Natarajan M., Manna B., Ghosh A., Singh P., Saha S.K., Dhama K., Dutt T., Bag S. (2022). Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells. Nanomedicine, 40: 102487.
  76. Moniruzzaman M., Kim D., Kim H., Kim N., Chin S., Karthikeyan A., et al. (2023). Evaluation of dietary curcumin nanospheres as phytobiotics on growth performance, serum biochemistry, nutritional composition, meat quality, gastrointestinal health, and fecal condition of finishing pigs. Front. Vet. Sci., 10: 1127309.
  77. Mukherjee S., Togla O., Mukherjee A. (2022). Nanotechnology in animal breeding and reproduction. Recent Adv. Appl. Nanotechnol. Livest. Prod. Manag., pp. 142-174. The Agriculture Publication, Jaipur.
  78. Najafi A., Daghigh-Kia H., Mehdipour M., Mohammadi H., Hamishehkar H. (2022). Comparing the effect of rooster semen extender supplemented with gamma-oryzanol and its nano form on post-thaw sperm quality and fertility. Poult. Sci., 101: 101637.
  79. Natarajan M., Singh P., Mondal T., Kumar K., Das K., Dutt T., Bag S. (2021). In vitro propagation and cardiac differentiation of canine induced pluripotent stem cells on carbon nanotube substrates. Tissue Cell, 71: 101571.
  80. Neculai-Valeanu A.S., Ariton A.M., Mădescu B.M., Rîmbu C.M., Creangă Ş. (2021). Nanomaterials and essential oils as candidates for developing novel treatment options for bovine mastitis. Animals, 11: 1625.
  81. Nidhi, Kumar S., Yadav N., Kumar R., Mohan H. (2024). Nanosensors in veterinary disease detection. In Nanotechnology Theranostics in Livestock Diseases and Management, pp. 241–256. Springer.
  82. Noah N.M., Ndangili P.M. (2022). Nanosensor arrays: innovative approaches for medical diagnosis. In Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, pp. 350–386. CRC Press.
  83. Osorio H.M., Castillo-Solís F., Barragán S.Y., Rodríguez-Pólit C., Gonzalez-Pastor R. (2024). Graphene quantum dots from natural carbon sources for drug and gene delivery in cancer treatment. Int. J. Mol. Sci., 25: 10539.
  84. Pandey V., Haider T., Agrawal P., Soni S., Soni V. (2022). Advances in natural polymeric nanoparticles for the drug delivery. In Advanced Drug Delivery Systems. IntechOpen: London, UK.
  85. Pati R., Shevtsov M., Sonawane A. (2018). Nanoparticle vaccines against infectious diseases. Front. Immunol., 9: 2224.
  86. Prasad R.D., Sahoo A.K., Shrivastav O.P., Charmode N., Kamat R., Kajave N.G., Chauhan J., Banga S., Tamboli U., MS P., Atigre R.H. (2022). A review on aspects of nanotechnology in food science and animal nutrition. ES Food Agrofor., 8: 12–46.
  87. Prządka P., Buczak K., Frejlich E., Gąsior L., Suliga K., Kiełbowicz Z. (2021). The role of mesenchymal stem cells (MSCs) in veterinary medicine and their use in musculoskeletal disorders. Biomolecules, 11: 1141.
  88. Przybyszewska A., Barbosa C.H., Pires F., Pires J.R.A., Rodrigues C., Galus S., et al. (2023). Packaging of fresh poultry meat with innovative and sustainable ZnO/pectin bionanocomposite films—a contribution to the bio and circular economy. Coatings, 13: 1208.
  89. Rahman H.S., Othman H.H., Abdullah R., Edin H.Y.A.S., Al-Haj N.A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci., 8: 1769–1779.
  90. Reddy P.R.K., Yasaswini D., Reddy P.P.R., Kumar D.S., Elghandour M.M., Salem A.Z.M. (2023). Nanotechnology in veterinary sector: current applications, limitations and future perspective. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications, pp. 1541–1567. Springer.
  91. Reddy P.R.K., Yasaswini D., Reddy P.P.R., Zeineldin M., Adegbeye M.J., Hyder I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Vet. World, 13: 1685–1696.
  92. Remião M.H., Segatto N.V., Pohlmann A., Guterres S.S., Seixas F.K., Collares T. (2018). The potential of nanotechnology in medically assisted reproduction. Front. Pharmacol., 11: 994.
  93. Ricles L.M., Nam S.Y., Trevino E.A., Emelianov S.Y., Suggs L.J. (2014). A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B, 2: 8220–8230.
  94. Rios T.B., Maximiano M.R., Feitosa G.C., Malmsten M., Franco O.L. (2024). Nanosensors for animal infectious disease detection. Sens. Bio-Sens. Res., 43: 100622.
  95. Saadeldin I.M., Khalil W.A., Alharbi M.G., Lee S.H. (2020). The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation. Animals, 10: 2281.
  96. Santos-Jimenez Z., Guillen-Gargallo S., Encinas T., Berlinguer F., Veliz-Deras F.G., Martinez-Ros P., Gonzalez-Bulnes A. (2020). Use of propylene-glycol as a cosolvent for GnRH in synchronization of estrus and ovulation in sheep. Animals, 10: 897.
  97. Sawutdeechaikul P., Cia F., Bancroft G.J., Wanichwecharungruang S., Sittplangkoo C., Palaga T. (2019). Oxidized carbon nanosphere-based subunit vaccine delivery system elicited robust Th1 and cytotoxic T cell responses. J. Microbiol. Biotechnol., 29: 489–499.
  98. Sekimukai H., Iwata-Yoshikawa N., Fukushi S., Tani H., Kataoka M., Suzuki T., Nagata N. (2020). Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol., 64: 33–51.
  99. Semeano A.T., Tofoli F.A., Corrêa-Velloso J.C., de Jesus Santos A.P., Oliveira-Giacomelli Á., Cardoso R.R., Pessoa M.A., da Rocha E.L., Ribeiro G., Ferrari M.F.R., Pereira L.V., Teng Y.D., Petri D.F.S., Ulrich H. (2022). Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev. Rep., 18: 1337–1354.
  100. Shafi B.U.D., Kumar R., Jadhav S.E., Kar J. (2020). Effect of zinc nanoparticles on milk yield, milk composition and somatic cell count in early-lactating Barbari does. Biol. Trace Elem. Res., 196: 96–102.
  101. Shahin M.A., Khalil W.A., Saadeldin I.M., Swelum A.A., El-Harairy M.A. (2020). Comparison between the effects of adding vitamins, trace elements, and nanoparticles to SHOTOR extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals, 10: 78.
  102. Shen W.B., Plachez C., Tsymbalyuk O., Tsymbalyuk N., Xu S., Smith A.M., Michel S.L., Yarnell D., Mullins R., Gullapalli R.P., Puche A. (2016). Cell-based therapy in TBI: magnetic retention of neural stem cells in vivo. Cell Transplant., 25: 1085–1099.
  103. Siddharth S. (2022). Stem cell biology: an overview. In Biotechnological Advances for Microbiology, Molecular Biology, and Nanotechnology, pp. 297–310.
  104. Sreekanth K., Sharath K.P., Midhun Dominic C.D., Radhakrishnan E.K. (2024). Microbial load reduction in stored raw beef meat using chitosan/starch-based active packaging films incorporated with cellulose nanofibers and cinnamon essential oil. Meat Sci., 216: 109552.
  105. Sun X., Gamal M., Nold P., Said A., Chakraborty I., Pelaz B., et al. (2019). Tracking stem cells and macrophages with gold and iron oxide nanoparticles: the choice of the best suited particles. Appl. Mater. Today, 15: 267–279.
  106. Teng Z., Sun S., Luo X., Zhang Z., Seo H., Xu X., Huang J., Dong H., Mu S., Du P., Zhang Z., Guo H. (2021). Bi-functional gold nanocages enhance specific immunological responses of foot-and-mouth disease virus-like particles vaccine as a carrier and adjuvant. Nanomedicine, 33: 102358.
  107. Tewari A., Jain B., Brar B., Prasad G., Prasad M. (2021). Biosensors: modern tools for disease diagnosis and animal health monitoring. In Biosensors in Agriculture: Recent Trends and Future Perspectives, pp. 387–414.
  108. Thwala L.N., Ndlovu S.C., Mpofu K.T., Lugongolo M.Y., Mthunzi-Kufa P. (2023). Nanotechnology-based diagnostics for diseases prevalent in developing countries: current advances in point-of-care tests. Nanomaterials, 13: 1247.
  109. TS A., Shalumon K.T., Chen J.P. (2019). Applications of magnetic liposomes in cancer therapies. Curr. Pharm. Des., 25: 1490–1504.
  110. Usman K.A.S., Maina J.W., Seyedin S., Conato M.T., Payawan L.M. Jr, Dumée L.F., Razal J.M. (2020). Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Mater., 12: 58.
  111. Veclin C., Desmet C., Pradel A., Valsesia A., Ponti J., El Hadri H., Maupas T., Pellerin V., Gigault J., Grassl B., Reynaud S. (2022). Effect of the surface hydrophobicity–morphology– functionality of nanoplastics on their homoaggregation in seawater. ACS ES&T Water, 2: 88–95.
  112. Vo-Van Q.B., Duong T.H., Le T.K.A. (2023). Biosynthesis of silver nanoparticles using curcumin against the bovine mastitis bacteria. J. Cent. Eur. Agric., 24: 505–512.
  113. Walewska M., Małek A., Taciak B., Wojtalewicz A., Wilk S., Wojtkowska A., Zabielska-Koczywąs K., Lechowski R. (2023). PEG-liposomal doxorubicin as a potential agent for canine metastatic osteosarcoma—in vitro and ex ovo studies. J. Vet. Res., 67: 297.
  114. Wang K., Lu X., Lu Y., Wang J., Lu Q., Cao X., Yang Y., Yang Z. (2022). Nanomaterials in animal husbandry: research and prospects. Front. Genet., 13: 915911.
  115. Wang M., Yang X., Zhang P., Cai L., Yang X., Chen Y., Jing Y., Kong J., Yang X., Sun F.L. (2016). Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv. Sci., 3: 1500393.
  116. Wang X., Bai R. (2023). Advances in smart delivery of magnetic field-targeted drugs in cardiovascular diseases. Drug Deliv., 30: 2256495.
  117. Weeratunga P., Harman R.M., Van de Walle G.R. (2023). Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front. Vet. Sci., 10: 1129287.
  118. Williams A., Bennison J.J., Mackenzie A.M., Sinclair L.A. (2024). Feeding nanoparticles of copper oxide coated with lysine with or without added antagonists affects the copper status but not the performance of Holstein dairy cows. J. Dairy Sci., 107: 9277–9288.
  119. Wu L., Wang C., Li Y. (2022). Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine, 17: 1567–1583.
  120. Xie S., Ying Z., Xiu Z., Sun Y., Yang Q., Gao H., Wu Y. (2024). Zinc oxide nanoparticles improve lactation and metabolism in dairy goats by modulating the rumen microbiota. Front. Microbiol., 15: 1483680.
  121. Yang Y., Xing R., Liu S., Qin Y., Li K., Yu H., Li P. (2020). Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr. Polym., 229: 115423.
  122. Ying Z., Xie S., Xiu Z., Sun Y., Yang Q., Gao H., Fan W., Wu Y. (2025). Under heat stress conditions, selenium nanoparticles promote lactation through modulation of rumen microbiota and metabolic processes in dairy goats. Sci. Rep., 15: 9063.
  123. Younis S., Zia R., Tahir N., Bukhari S.Z., Khan W.S., Bajwa S.Z. (2022). Nanosensors for animal health monitoring. In Nanosensors for Smart Agriculture, pp. 509–529. Elsevier.
  124. Yuan Y.G., Peng Q.L., Gurunathan S. (2017). Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci., 18: 569.
  125. Zhao C., Song X., Jin W., Wu F., Zhang Q., Zhang M., Shen J. (2019). Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta, 1056: 108–116.
  126. Zorkina Y., Abramova O., Ushakova V., Morozova A., Zubkov E., Valikhov M., Melnikov P., Majouga A., Chekhonin V. (2020). Nanocarrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules, 25: 5294.
DOI: https://doi.org/10.2478/aoas-2025-0081 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Sep 23, 2024
Accepted on: Aug 12, 2025
Published on: Aug 26, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Meemansha Sharma, Yasotha Tirupathi, Raushan Kumar Singh, Ajoy Das, Thakur Uttam Singh, Ayon Tarafdar, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT