Have a personal or library account? Click to login
Effects of replacing fish meal by plant protein sources in fish feed on serum and muscle cholesterol levels, cholesterol metabolism-related enzyme activity and gene expression of fish: A review Cover

Effects of replacing fish meal by plant protein sources in fish feed on serum and muscle cholesterol levels, cholesterol metabolism-related enzyme activity and gene expression of fish: A review

Open Access
|Aug 2025

References

  1. Adelizi P.D., Rosati R.R., Warner K., Wu Y.V, Muench T.R., White M.R., Brown P.B. (1998). Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss. Aquacult. Nutr., 4: 255–262.
  2. Ahmed M., Liang H., Chisomo K.H., Ji K., Ge X., Ren M., Liu B., Zhu X., Sun A. (2019). Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquacult. Nutr., 25: 205–214.
  3. Aksnes A., Hope B., Albrektsen S. (2006). Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. II: Flesh quality, absorption, retention and fillet levels of taurine and anserine. Aquaculture, 261: 318–326.
  4. Alami-Durante H., Médale F., Cluzeaud M., Kaushik S.J. (2010). Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture, 303: 50–58.
  5. Amritha J., Berge G.M., Bogevik A.S., Krasnov A., Ruyter B., Fæste C.K., Østbye T.-K.K. (2020). Sensitivity to Dietary Wheat Gluten in Atlantic Salmon Indicated by Gene Expression Changes in Liver and Intestine. Sci. Rep., 10: 1–15.
  6. Awad A., Mohammady E.Y., Soaudy M.R., Rabetimarghezar N., El-Haroun E.R., Hassaan, M.S. (2024). Growth and physiological response of Nile tilapia (Oreochromis niloticus) fed a fermented mixture of plant protein sources. Anim. Feed Sci. Technol., 315:w 116034. https://doi.org/10.1016/j.anifeedsci.2024.116034
  7. Bagam P., Singh D.P., Inda M.E., Batra S. (2017). Unraveling the role of membrane microdomains during microbial infections. Cell Biol. Toxicol., 33: 429–455.
  8. Barrientos G., Llanos P., Hidalgo J., Bolaños P., Caputo C., Riquelme A., Sánchez G., Quest A.F.G., Hidalgo C. (2015). Cholesterol removal from adult skeletal muscle impairs excitation–contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins. Front. Physiol., 6: 105.
  9. Barrientos G., Sánchez-Aguilera P., Jaimovich E., Hidalgo C., Llanos P. (2017). Membrane cholesterol in skeletal muscle: a novel player in excitation‐contraction coupling and insulin resistance. J. Diabetes Res., 2017: 3941898.
  10. Bautista-Teruel MN., Eusebio P.S., Welsh T.P. (2003). Utilization of feed pea, Pisum sativum, meal as a protein source in practical diets for juvenile tiger shrimp, Penaeus monodon. Aquaculture, 225: 121–131.
  11. Bendiksen E.Å., Johnsen C.A., Olsen H.J., Jobling M. (2011). Sustainable aquafeeds: progress towards reduced reliance upon marine ingredients in diets for farmed Atlantic salmon (Salmo salar L.). Aquaculture, 314: 132–139.
  12. Berge G.E., Sveier H., Lied E. (1998). Nutrition of Atlantic salmon (Salmo salar); the requirement and metabolic effect of lysine. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 120: 477–485.
  13. Berge G.M., Grisdale-Helland B., Helland S.J. (1999). Soy protein concentrate in diets for Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 178: 139–148.
  14. Bonaldo A., Di Marco P., Petochi T., Marino G., Parma L., Fontanillas R., Koppe W., Mongile F., Finoia M.G., Gatta P.P. (2015). Feeding turbot juveniles Psetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare. Aquacult. Nutr., 21: 401–413.
  15. Bonaldo A., Parma L., Mandrioli L., Sirri R., Fontanillas R., Badiani A., Gatta P.P. (2011). Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture, 318: 101–108.
  16. Bonvini E., Bonaldo A., Mandrioli L., Sirri R., Dondi F., Bianco C., Fontanillas R., Mongile F., Gatta P.P., Parma L. (2018). Effects of feeding low fishmeal diets with increasing soybean meal levels on growth, gut histology and plasma biochemistry of sea bass. Animal, 12: 923–930.
  17. Bou M., Berge G.M., Baeverfjord G., Sigholt T., Østbye T.-K., Romarheim O.H., Hatlen B., Leeuwis R., Venegas C., Ruyter B. (2017). Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr., 117: 30–47.
  18. Caballero-Solares A., Hall J.R., Xue X., Eslamloo K., Taylor R.G., Parrish C.C., Rise M.L. (2017). The dietary replacement of marine ingredients by terrestrial animal and plant alternatives modulates the antiviral immune response of Atlantic salmon (Salmo salar). Fish Shellfish Immunol., 64: 24–38.
  19. Caballero-Solares A., Xue X., Parrish C.C., Foroutani M.B., Taylor R.G., Rise M.L. (2018). Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genomics, 19: 1–26.
  20. Cabral E.M., Fernandes T.J.R., Campos S.D., Castro-Cunha M., Oliveira M., Cunha L.M., Valente L.M.P. (2013). Replacement of fish meal by plant protein sources up to 75% induces good growth performance without affecting flesh quality in ongrowing Senegalese sole. Aquaculture, 380: 130–138.
  21. Cai W., Liu H., Han D., Zhu X., Jin J., Yang Y., Xie, S. (2022). Complete replacement of fishmeal with plant protein ingredients in Gibel carp (Carassius auratus gibelio) diets by supplementation with essential amino acids without negative impact on growth performance and muscle growth-related biomarkers. Front. Mar. Sci., 8: 759086.
  22. Caponio G.R., Wang D.Q.-H., Di Ciaula A., De Angelis M., Portincasa P. (2020). Regulation of cholesterol metabolism by bioactive components of soy proteins: Novel translational evidence. Int. J. Mol. Sci., 22: 227.
  23. Carneiro W.F., Castro T.F.D., Orlando T.M., Meurer F., de Jesus Paula D.A., Virote B. do C.R., Vianna A.R. da C.B., Murgas L.D.S. (2020). Replacing fish meal by Chlorella sp. meal: effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture, 528: 735612. DOI: 10.1016/j.aquaculture.2020.735612
  24. Castro C., Corraze G., Pérez-Jiménez A., Larroquet L., Cluzeaud M., Panserat S., Oliva-Teles A. (2015). Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br. J. Nutr., 114: 1143–1156.
  25. Chen L., Qi Y., Shi M., Qu K., Liu Y., Tan B., Xie S. (2024). A mixed animal and plant protein source replacing fishmeal affects bile acid metabolism and apoptosis in largemouth bass (Micropterus salmoides). J. Am. Sci., 102: 2024, skae249. https://doi.org/10.1093/jas/skae249
  26. Chen Y., Liu W., Ma J., Wang Y., Huang H. (2020). Comprehensive physiological and transcriptomic analysis revealing the responses of hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) to the replacement of fish meal with soy protein concentrate. Fish Physiol. Biochem., 46: 2037–2053.
  27. Cheng Z.J., Hardy R.W. (2004). Protein and lipid sources affect cholesterol concentrations of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone). J. Am. Sci., 82: 1136–1145.
  28. Couto A., Kortner T.M., Penn M., Bakke A.M., Krogdahl Å., Oliva-Teles A. (2014). Effects of dietary soy saponins and phytosterols on gilthead sea bream (Sparus aurata) during the on-growing period. Anim. Feed Sci. Technol., 198: 203–214.
  29. Couto A., Peres H., Oliva-Teles A., Enes P. (2016). Screening of nutrient digestibility, glycaemic response and gut morphology alterations in gilthead seabream (Sparus aurata) fed whole cereal meals. Aquaculture, 450: 31–37.
  30. D’Abramo L.R. (2021). Sustainable aquafeed and aquaculture production systems as impacted by challenges of global food security and climate change. J. World Aquac. Soc., 52: 1162–1167.
  31. Daniel N. (2016). Neem seed cake (NSC) as fish feed ingredient: Opportunities and constraints. Int. J. Fish. Aquat. Stud. 4: 20–23.
  32. de Francesco M., Parisi G., Médale F., Lupi P., Kaushik S.J., Poli B.M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236:, 413–429.
  33. Deng J., Bi B., Kang B., Kong L., Wang Q., Zhang X. (2013). Improving the growth performance and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed soyabean meal-based diets using dietary cholesterol supplementation. Br. J. Nutr., 110: 29–39.
  34. Deng J., Mai K., Ai Q., Zhang W., Wang X., Tan B., Xu W., Liufu Z., Ma H. (2010). Interactive effects of dietary cholesterol and protein sources on growth performance and cholesterol metabolism of Japanese flounder (Paralichthys olivaceus). Aquacult. Nutr., 16: 419–429.
  35. Deng J., Wang K., Mai K., Chen L., Zhang L., Mi H. (2017). Effects of replacing fish meal with rubber seed meal on growth, nutrient utilization, and cholesterol metabolism of tilapia (Oreochromis niloticus× O. aureus). Fish Physiol. Biochem., 43: 941–954.
  36. Dhanasiri A.K.S., Johny A., Xue X., Berge G.M., Bogevik A.S., Rise M.L., Fæste C.K., Fernandes J.M.O. (2020). Plant-Based Diets Induce Transcriptomic Changes in Muscle of Zebrafish and Atlantic Salmon. Front. Genet., 11: 673 https://doi.org/10.3389/fgene.2020.575237
  37. Dikkers A., Tietge U.J.F. (2010). Biliary cholesterol secretion: more than a simple ABC. World J. Gastroenterol., 16: 5936.
  38. Dossou S., Koshio S., Ishikawa M., Yokoyama S., Dawood M.A.O., El Basuini M.F., El-Hais A.M., Olivier A. (2018). Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture, 490: 228–235.
  39. El‐Sayed A.M., Tammam M.S., Makled S.O. (2021). Lecithin‐containing bioemulsifier boosts growth performance, feed digestion and absorption and immune response of adult Nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 27: 757–770. https://doi.org/10.1111/anu.13221
  40. Engin K., Carter C.G. (2005). Fish meal replacement by plant and animal by‐products in diets for the Australian short‐finned eel, Anguilla australis australis (Richardson). Aquacult. Res., 36: 445–454.
  41. Fan Z., Ge K., Wu D., Wang L., Li J., Li C., Zhou M., Zhang H., Miao L., Ge X. (2024). Suitable Cottonseed Protein Concentrate Supplementation in Common Carp (Cyprinus carpio) Serves as an Effective Strategy for Fish Meal Sparing Based on Improvement in Intestinal Antioxidant Capacity, Barrier and Microbiota Composition. Antioxidants, 13: 436. https://doi.org/10.3390/antiox13040436
  42. FAO R. (2022). The state of world fisheries and aquaculture 2022. Towards blue transformation. In The State of World Fisheries and Aquaculture (SOFIA) (p. 266). FAO Rome, Italy, pp. 1-266. https://doi.org/10.4060/cc0461en
  43. Fournier V., Huelvan C., Desbruyeres E. (2004). Incorporation of a mixture of plant feedstuffs as substitute for fish meal in diets of juvenile turbot (Psetta maxima). Aquaculture, 236: 451–465.
  44. Gatlin III D.M., Barrows F.T., Brown P., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E., Hu G., Krogdahl Å., Nelson R. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult. Res., 38: 551–579.
  45. Ge Y., Zhang L., Chen W., Sun M., Liu W., Li X. (2023). Resveratrol modulates the redox response and bile acid metabolism to maintain the cholesterol homeostasis in fish Megalobrama amblycephala offered a high-carbohydrate diet. Antioxidants, 12: 121.
  46. Geay F., Ferraresso S., Zambonino-Infante J.L., Bargelloni L., Quentel C., Vandeputte M., Kaushik S., Cahu C.L., Mazurais D. (2011). Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-subfamilies showing different growth rates with the plant-based diet. BMC Genomics, 12: 1–18.
  47. Gomes E.F., Rema P., Kaushik S.J. (1995). Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture, 130: 177–186.
  48. Gonçalves R.A., Serradeiro R., Machado M., Costas B., Hunger C., Dias J. (2019). Interactive effects of dietary fishmeal level and plant essential oils supplementation on European sea bass, Dicentrarchus labrax: Growth performance, nutrient utilization, and immunological response. J. World Aquac. Soc., 50: 1078–1092.
  49. Gu M., Bai N., Kortner T.M. (2017). Taurocholate supplementation attenuates the changes in growth performance, feed utilization, lipid digestion, liver abnormality and sterol metabolism in turbot (Scophthalmus maximus) fed high level of plant protein. Aquaculture, 468: 597–604.
  50. Gu M., Kortner T.M., Penn M., Hansen A.K., Krogdahl Å. (2014). Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br. J. Nutr., 111: 432–444.
  51. Guerreiro I., Oliva-Teles A., Enes P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture, 441: 57–63.
  52. Hansen A.-C., Rosenlund G., Karlsen Ø., Koppe W., Hemre G.-I. (2007). Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I—Effects on growth and protein retention. Aquaculture, 272: 599–611.
  53. Hassaan M.S., Mohammady E.Y., Soaudy M.R., Abdel Rahman A.A.S. (2019). Exogenous xylanase improves growth, protein digestibility and digestive enzymes activities in Nile tilapia, Oreochromis niloticus, fed different ratios of fish meal to sunflower meal. Aquacult. Nutr., 25: 841–853. https://doi.org/10.1111/anu.12903
  54. Hassaan M.S., Mohammady E.Y., Soaudy M.R., Elashry M.A., Moustafa M.M.A., Wassel M.A., El-Garhy H.A.S., El-Haroun E.R., Elsaied H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim. Feed Sci. Technol., 275: 114892. https://doi.org/10.1016/j.anifeedsci.2021.114892
  55. Hassaan M.S., Soltan M.A., Abdel-Moez A.M. (2015). Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol., 201: 89–98. https://doi.org/10.1016/j.anifeedsci.2015.01.007
  56. Hassaan M.S., Soltan M.A., Mohammady E.Y., Elashry M.A., El-Haroun E.R., Davies S.J. (2018). Growth and physiological responses of Nile tilapia, Oreochromis niloticus fed dietary fermented sunflower meal inoculated with Saccharomyces cerevisiae and Bacillus subtilis. Aquaculture, 495: 592–601. https://doi.org/10.1016/j.aquaculture.2018.06.018
  57. He Y., Tang Y., Xu N., Yao C., Gong Y., Yin Z., Li Q., Zhang Y., Lai W., Liu Y. (2022). Effects of supplemental phytosterol on growth performance, body composition, serum biochemical indexes and lipid metabolism of juvenile large yellow croaker (Larimichthys crocea) fed with high lipid diet. Aquaculture, 551: 737889.
  58. Hixson S.M., Parrish C.C., Xue X., Wells J.S., Collins S.A., Anderson D.M., Rise M.L. (2017). Growth performance, tissue composition, and gene expression responses in Atlantic salmon (Salmo salar) fed varying levels of different lipid sources. Aquaculture, 467: 76–88.
  59. Hussain S.M., Bano A.A., Ali S., Rizwan M., Adrees M., Zahoor A.F., Sarker P.K., Hussain M., Arsalan M.Z.-H., Yong J.W.H. (2024). Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon, 10: e26573.
  60. Iqbal M., Yaqub A., Ayub M. (2022a). Effects of partial and full dietary substitution of fish meal and soybean meal by sunflower meal on growth performance, feed consumption, body indices, serum chemistry and intestine morphology of Oreochromis niloticus. Turk. J. Fish. Aquat. Sci., 22: TRJFAS19613. https://doi.org/10.4194/TRJFAS19613
  61. Iqbal M., Yaqub A., Ayub M. (2022b). Partial and full substitution of fish meal and soybean meal by canola meal in diets for genetically improved farmed tilapia (Oreochromis niloticus): Growth performance, carcass composition, serum biochemistry, immune response, and intestine histology. J. Appl. Aquacult., 34: 829–854.
  62. Jahanbakhshi A., Hedayati A. (2013). The effect of water-soluble fraction of crude oil on serum biochemical changes in the great sturgeon, Huso huso. Comp. Clin. Pathol., 22: 1099–1102.
  63. Jiang J., Lu X., Dong L., Tian J., Zhang J., Guo Z., Luo Y., Cui Z., Wen H., Jiang M. (2024). Enhancing growth, liver health, and bile acid metabolism of tilapia (Oreochromis niloticus) through combined cholesterol and bile acid supplementation in plant-based diets. Anim. Nutr., 17: 335–346.
  64. Jiang T., Feng L., Liu Y., Jiang W., Jiang J., Li S., Tang L., Kuang S., Zhou X. (2014). Effects of exogenous xylanase supplementation in plant protein‐enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult. Nutr., 20: 632–645.
  65. Jiang X., Song Z., Li C., Hu X., Ge Y., Cheng L., Shi X., Jia Z. (2024). Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio). Animals, 14: 2583.
  66. Johnson R.B., Kim S.-K., Watson A.M., Barrows F.T., Kroeger E.L., Nicklason P.M., Goetz G.W., Place A.R. (2015). Effects of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria) fed plant based feeds. Aquaculture, 445: 79–85.
  67. Johny A., Berge G.M., Bogevik A.S., Krasnov A., Ruyter B., Fæste C.K., Østbye T.-K.K. (2020). Sensitivity to dietary wheat gluten in Atlantic salmon indicated by gene expression changes in liver and intestine. Genes, 11: 1339.
  68. Just S., Mondot S., Ecker J., Wegner K., Rath E., Gau L., Streidl T., Hery-Arnaud G., Schmidt S., Lesker T.R. (2018). The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 6: 1–18.
  69. Katan T., Caballero-Solares A., Taylor R.G., Rise M.L., Parrish C.C. (2019). Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. D Genomics Proteomics, 30: 290–304.
  70. Kaushik S.J., Coves D., Dutto G., Blanc D. (2004). Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture, 230: 391–404.
  71. Kemski M.M. (2018). Fish meal replacement with soybean meal in yellow perch (Perca flavescens) diets: responses of nutritional programming on growth, transcriptome and isoflavone accumulation. The Ohio State University. http://rave.ohiolink.edu/etdc/view?acc
  72. Kim J., Cho S.H. (2024). Substitution effect of fish meal with various plant protein sources on growth performance and feed utilization in rockfish (Sebastes schlegeli) diets including jack mackerel meal used as feed stimulants. Front. Mar. Sci., 11: 1339471.
  73. Kim K., Jang J., Lee K.W., Kim K., Lee B., Hur S.W., Han H. (2021). The effect of a long‐term dietary replacement of fishmeal with a mixture of alternative protein sources in a formulated diet on growth performance, body composition and economic efficiency of young Korean rockfish (Sebastes schlegeli). Aquacult. Res., 52: 2004–2013.
  74. Kokou F., Rigos G., Kentouri M., Alexis M. (2016). Effects of DL-methionine-supplemented dietary soy protein concentrate on growth performance and intestinal enzyme activity of gilthead sea bream (Sparus aurata L.). Aquacult. Int., 24: 257–271.
  75. Köprücü K., Sertel E. (2012). The effects of less-expensive plant protein sources replaced with soybean meal in the juvenile diet of grass carp (Ctenopharyngodon idella): growth, nutrient utilization and body composition. Aquacult. Int., 20: 399–412.
  76. Kopylov A.T., Malsagova K.A., Stepanov A.A., Kaysheva A.L. (2021). Diversity of plant sterols metabolism: The impact on human health, sport, and accumulation of contaminating sterols. Nutrients, 13: 1623.
  77. Kortner T.M., Björkhem I., Krasnov A., Timmerhaus G., Krogdahl Å. (2014). Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). Br. J. Nutr., 111: 2089–2103.
  78. Kortner T.M., Gu J., Krogdahl Å., Bakke A.M. (2013). Transcriptional regulation of cholesterol and bile acid metabolism after dietary soyabean meal treatment in Atlantic salmon (Salmo salar L.). Br. J. Nutr., 109: 593–604.
  79. Kousoulaki K., Mørkøre T., Nengas I., Berge R.K., Sweetman J. (2016). Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture, 451: 47–57.
  80. Kousoulaki K., Sveen L., Norén F., Espmark Å. (2022). Atlantic salmon (Salmo salar) performance fed low trophic ingredients in a fish meal and fish oil free diet. Front. Physiol., 13: 884740.
  81. Koven W., Bracha C., Nixon O., Israeli D., Tandler A., Meiri-Ashkenazi I., Rosenfeld H. (2023). The effect of dietary taurine and its potential biosynthesis on juvenile grey mullet (Mugil cephalus) performance. Isr. J. Aquacult. – Bamidgeh, 75. https://hdl.handle.net/10524/68893
  82. Koven W., Peduel A., Gada M., Nixon O., Ucko M. (2016). Taurine improves the performance of white grouper juveniles (Epinephelus Aeneus) fed a reduced fish meal diet. Aquaculture, 460: 8–14.
  83. Kulkarni R., Wiemer E.A.C., Chang W. (2022). Role of lipid rafts in pathogen-host interaction-a mini review. Front. Immunol., 12: 815020.
  84. Lazzarotto V., Médale F., Larroquet L., Corraze G. (2018). Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLoS One, 13: e0190730.
  85. Lee K., Rahimnejad S., Powell M.S., Barrows F.T., Smiley S., Bechtel P.J., Hardy R.W. (2015). Salmon testes meal as a functional feed additive in fish meal and plant protein‐based diets for rainbow trout (Oncorhynchus mykiss Walbaum) and Nile tilapia (Oreochromis niloticus L.) fry. Aquacult. Res., 46: 1590–1596.
  86. Li R.-X., Chen L.-Y., Limbu S.M., Qian, Y.-C., Zhou W.-H., Chen L.-Q., Luo Y., Qiao F., Zhang M.-L., Du Z.-Y. (2023). High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia (Oreochromis niloticus). Mar. Life Sci. Technol., 5: 56–74.
  87. Li T., Chiang J.Y.L. (2009). Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Research, 2009: 501739. DOI: 10.1155/2009/501739
  88. Liang H., Ren M., Zhang L., Mi H., Yu H., Huang D., Gu J., Teng T. (2024). Excessive Replacement of Fish Meal by Soy Protein Concentrate Resulted in Inhibition of Growth, Nutrient Metabolism, Antioxidant Capacity, Immune Capacity, and Intestinal Development in Juvenile Largemouth Bass (Micropterus salmoides). Antioxidants, 13: 809.
  89. Lie K.K., Hansen A., Eroldogan O.T., Olsvik P.A., Rosenlund G., Hemre G. (2011). Expression of genes regulating protein metabolism in Atlantic cod (Gadus morhua L.) was altered when including high diet levels of plant proteins. Aquacult. Nutr., 17: 33–43.
  90. Lifsey H.C., Kaur R., Thompson B.H., Bennett L., Temel R.E., Graf G.A. (2020). Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J. Nutr. Biochem., 76: 108263.
  91. Liland N.S. (2011). The effect of plant proteins and vegetable oils on the sterol metabolism of Atlantic salmon (Salmo salar). The University of Bergen. https://hdl.handle.net/1956/7201
  92. Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327: 46–50.
  93. Liu T., Han T., Wang J., Liu T., Bian P., Wang Y., Cai X. (2021). Effects of replacing fish meal with soybean meal on growth performance, feed utilization and physiological status of juvenile redlip mullet, Liza haematocheila. Aquacult. Rep., 20: 100756.
  94. Liu Y., Ma S., Lv W., Shi H., Qiu G., Chang H., Lu S., Wang D., Wang C., Han S., Liu H. (2022). Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, blood metabolites, and the intestinal health of juvenile rainbow trout (Oncorhynchus mykiss). Front. Immunol., 13. https://doi.org/10.3389/fimmu.2022.1079677
  95. López L.M., Flores-Ibarra M., Bañuelos-Vargas I., Galaviz M.A., True C.D. (2015). Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on growth performance, hematological and biochemical status, and liver histology of totoaba juveniles (Totoaba macdonaldi). Fish Physiol. Biochem., 41: 921–936.
  96. Lund I., Dalsgaard J., Rasmussen H.T., Holm J., Jokumsen A. (2011). Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture, 321: 259–266.
  97. Macusi E.D., Cayacay M.A., Borazon E.Q., Sales A.C., Habib A., Fadli N., Santos M.D. (2023). Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability, 15: 12500.
  98. Mahmoud M.M.A., Kilany O.E., Dessouki A.A. (2014). Effects of fish meal replacement with soybean meal and use of exogenous enzymes in diets of Nile tilapia (Oreochromis niloticus) on growth, feed utilization, histopathological changes and blood parameters. Life Sci. J., 11: 6–18.
  99. Maita M., Maekawa J., Satoh K., Futami K., Satoh S. (2006). Disease resistance and hypocholesterolemia in yellowtail, Seriola quinqueradiata fed a non-fishmeal diet. Fish. Sci., 72: 513–519.
  100. Martini C., Pallottini V. (2007). Cholesterol: from feeding to gene regulation. Genes Nutr., 2: 181–193.
  101. Mellery J., Geay F., Stas C., Tocher D.R., Kestemont P., Rollin X., Larondelle Y. (2015). Does the water temperature influence the fatty acid metabolism of rainbow trout (Oncorhynchus mykiss) fed a vegetable diet? Commun. Agric. Appl. Biol. Sci., 80: 347-351.
  102. Meng X., Bi Q., Ma Q., Wei Y., Li Y., Liang M., Xu H. (2023). Dietary Cholesterol Differentially Regulates the Muscle Lipidomics of Farmed Turbot and Tiger Puffer. Animals, 13: 1632.
  103. Minjarez-Osorio C., Castillo-Alvarado S., Gatlin III D.M., González-Félix M.L., Perez-Velazquez M., Rossi Jr W. (2016). Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): A comparative study. Aquaculture, 453: 122–129.
  104. Mohammady E.Y., Aboseif A.M., Soaudy M.R., Ramadan E.A., Hassaan M.S. (2023). Appraisal of fermented wheat bran by Saccharomyces cerevisiae on growth, feed utilization, blood indices, intestinal and liver histology of Nile tilapia, Oreochromis niloticus. Aquaculture, 575: 739755. https://doi.org/10.1016/j.aquaculture.2023.739755
  105. Mohammady E.Y., Soaudy M.R., Elashry M.A., Hassaan M.S. (2025). Assessment of the nutritional impact of substituting fishmeal with enzymatically hydrolyzed jojoba meal (Simmondsia chinensis) in the diets of Nile tilapia, Oreochromis niloticus. Aquaculture, 596: 741888. https://doi.org/10.1016/j.aquaculture.2024.741888
  106. Morais S., Pratoomyot J., Torstensen B.E., Taggart J.B., Guy D.R., Bell J.G., Tocher D.R. (2011). Diet× genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br. J. Nutr., 106: 1457–1469.
  107. Mugwanya M., Dawood M.A.O., Kimera F., Sewilam H. (2023). Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta‐analysis. Rev. Aquacult., 15: 62–88.
  108. Murashita K., Matsunari H., Yoshinaga H., Yasuike M., Yamamoto T., Oku H., Furuita H. (2024). Effect of inclusion of animal proteins to plant protein-based diet on physiological condition of red seabream, Pagrus major. Fish Sci., 90: 1011–1023.
  109. Nagel F., von Danwitz A., Tusche K., Kroeckel S., van Bussel C.G.J., Schlachter M., Adem H., Tressel R.-P., Schulz C. (2012). Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Psetta maxima L.)—Impact on growth performance, body composition, nutrient digestibility and blood physiology. Aquaculture, 356: 357–364.
  110. Nandeesha M.C., Gangadhara B., Manissery J.K. (2002). Further studies on the use of mixed feeding schedules with plant‐and animal‐based diets for common carp (Cyprinus carpio Linnaeus). Aquacult. Res., 33: 1157–1162.
  111. O’Keeffe M., Gudbrandsen O.A. (2023). Effects of diets containing proteins from fish muscles or fish by-products on the circulating cholesterol concentration in rodents: a systematic review and meta-analysis. Br. J. Nutr., 130: 389–410.
  112. Palmegiano G.B., Gai F., Daprà F., Gasco L., Pazzaglia M., Peiretti P.G. (2008). Effects of Spirulina and plant oil on the growth and lipid traits of white sturgeon (Acipenser transmontanus) fingerlings. Aquacult. Res., 39: 587–595.
  113. Palomba A., Melis R., Biosa G., Braca A., Pisanu S., Ghisaura S., Caimi C., Biasato I., Oddon S.B., Gasco L. (2022). On the compatibility of fish meal replacements in aquafeeds for rainbow trout. A combined metabolomic, proteomic and histological study. Front. Physiol., 13: 920289.
  114. Penazzi L. (2023). Digestibility and nutritional adequacy of innovative materials in pet food.
  115. Peng K.-S., Wu N., Cui Z.-W., Zhang X.-Y., Lu X.-B., Wang Z.-X., Zhang Y.-A. (2020). Effect of the complete replacement of dietary fish meal by soybean meal on histopathology and immune response of the hindgut in grass carp (Ctenopharyngodon idellus). Vet. Immunol. Immunopathol. 221: 110009.
  116. Plosch T., van der Veen J.N., Havinga R., Huijkman N.C.A., Bloks V.W., Kuipers F. (2006). Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 291: G414–G423.
  117. Poli A., Marangoni F., Corsini A., Manzato E., Marrocco W., Martini D., Medea G., Visioli F. (2021). Phytosterols, cholesterol control, and cardiovascular disease. Nutrients, 13: 2810.
  118. Racette S.B., Lin X., Lefevre M., Spearie C.A., Most M.M., Ma L., Ostlund Jr R.E. (2010). Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am. J. Clin. Nutr., 91: 32–38.
  119. Rahmdel K.J., Noveirian H.A., Falahatkar B., Lashkan A.B. (2018). Effects of replacing fish meal with sunflower meal on growth performance, body composition, hematological and biochemical indices of common carp fingerlings. Fish. Aquat. Life, 26: 121–129.
  120. Ranasinghe N., Lin C.-H., Lee T.-H. (2022). Cholesterol accumulation in livers of Indian medaka, Oryzias dancena, acclimated to fresh water and seawater. Front. Mar. Sci., 9: 891706.
  121. Refaey M.M., Mehrim A.I., Zenhom O.A., Areda H.A., Ragaza J.A., Hassaan M.S. (2023). Fresh Azolla, Azolla pinnata as a Complementary Feed for Oreochromis niloticus: Growth, Digestive Enzymes, Intestinal Morphology, Physiological Responses, and Flesh Quality. Aquacult. Nutr., 2023: 1–13. https://doi.org/10.1155/2023/1403704
  122. Ren M., Liang H., He J., Masagounder K., Yue Y., Yang H., Ge X., Xie J., Xi B. (2017). Effects of DL‐methionine supplementation on the success of fish meal replacement by plant proteins in practical diets for juvenile gibel carp (Carassius auratus gibelio). Aquacult. Nutr., 23: 934–941.
  123. Ren X., Wang Y., Chen J., Wu Y., Huang D., Jiang D., Li P. (2018). Replacement of fishmeal with a blend of poultry byproduct meal and soybean meal in diets for largemouth bass, Micropterus salmoides. J. World Aquac. Soc., 49: 155–164.
  124. Ritchie H., Roser M. (2024). The world now produces more seafood from fish farms than wild catch. Our World in Data.
  125. Rodiles A., Herrera M., Hachero‐Cruzado I., Ruiz‐Jarabo I., Mancera J.M., Cordero M.L., Lall S.P., Alarcón F.J. (2015). Tissue composition, blood biochemistry and histology of digestive organs in S enegalese sole (Solea senegalensis) juveniles fed diets containing different plant protein ingredients. Aquacult. Nutr., 21: 767–779.
  126. Rossi Jr W., Moxely D., Buentello A., Pohlenz C., Gatlin III D.M. (2013). Replacement of fishmeal with novel plant feedstuffs in the diet of red drum Sciaenops ocellatus: an assessment of nutritional value. Aquacult. Nutr., 19: 72–81.
  127. Ruiz A., Andree K.B., Sanahuja I., Holhorea P.G., Calduch-Giner J.À., Morais S., Pastor J.J., Pérez-Sánchez J., Gisbert E. (2023). Bile salt dietary supplementation promotes growth and reduces body adiposity in gilthead seabream (Sparus aurata). Aquaculture, 566: 739203.
  128. Salze G., McLean E., Battle P.R., Schwarz M.H., Craig S.R. (2010). Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, 298:, 294–299.
  129. Sarker M.S.A., Satoh S., Kiron V. (2007). Inclusion of citric acid and/or amino acid-chelated trace elements in alternate plant protein source diets affects growth and excretion of nitrogen and phosphorus in red sea bream, Pagrus major. Aquaculture, 262:, 436–443.
  130. Sarker P.K., Kapuscinski A.R., Bae A.Y., Donaldson E., Sitek A.J., Fitzgerald D.S., Edelson O.F. (2018). Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One, 13: e0201315.
  131. Shen J., Liu H., Tan B., Dong X., Yang Q., Chi S., Zhang S. (2020). Effects of replacement of fishmeal with cottonseed protein concentrate on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Aquacult. Nutr., 26: 1119–1130.
  132. Sicuro B., Gai F., Daprà F., Palmegiano G.B. (2012). Hybrid sturgeon ‘AL’ (Acipenser naccarii× Acipenser baeri) diets: the use of alternative plant protein sources. Aquacult. Res., 43: 161–166.
  133. Sim Y.J., Cho S.H., Kim K.-W., Jeong S.-M. (2023). Effect of substituting fish meal with various by-product meals of swine-origin in diet on olive flounder (Paralichthys olivaceus). Aquacult. Rep., 33: 101844.
  134. Simons K., Sampaio J.L. (2011). Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol., 3: a004697.
  135. Sison J.A. (2016). Global shift in farmed fish feed may impact nutritional benefits ascribed to seafood. Agric. (Philipp.), 20.
  136. Sissener N.H. (2018). Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol., 221(Suppl_1): jeb161521.
  137. Sissener N.H., Liland N.S., Holen E., Stubhaug I., Torstensen B.E., Rosenlund G. (2017). Phytosterols are not involved in the development of fatty liver in plant oil fed Atlantic salmon (Salmo salar) at high or low water temperature. Aquaculture, 480: 123–134.
  138. Sissener N.H., Rosenlund G., Stubhaug I., Liland N.S. (2018). Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol: cholesterol ratio, but not on the dietary phytosterol content. Br. J. Nutr., 119: 599–609.
  139. Sitjà-Bobadilla A., Peña-Llopis S., Gómez-Requeni P., Médale F., Kaushik S., Pérez-Sánchez J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249: 387–400.
  140. Snyder G.S., Gaylord T.G., Barrows F.T., Overturf K., Cain K.D., Hill R.A., Hardy R.W. (2012). Effects of carnosine supplementation to an all-plant protein diet for rainbow trout (Oncorhynchus mykiss). Aquaculture, 338: 72–81.
  141. Soltan N.M., Soaudy M.R., Abdella M.M., Hassaan M.S. (2023). Partial dietary fishmeal replacement with mixture of plant protein sources supplemented with exogenous enzymes modify growth performance, digestibility, intestinal morphology, haemato-biochemical and immune responses for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol., 299: 115642. https://doi.org/10.1016/j.anifeedsci.2023.115642
  142. Staessen T.W.O., Verdegem M.C.J., Koletsi P., Schrama J.W. (2020). The effect of dietary protein source (fishmeal vs. plant protein) and non‐starch polysaccharide level on fat digestibility and faecal bile acid loss in rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 51: 1170–1181.
  143. Suprayudi M.A., Inara C., Ekasari J., Priyoutomo N., Haga Y., Takeuchi T., Satoh S. (2015). Preliminary nutritional evaluation of rubber seed and defatted rubber seed meals as plant protein sources for common carp, Cyprinus carpio L. juvenile diet. Aquacult. Res., 46: 2972–2981.
  144. Sveier H., Nordas H., Berge G.E., Lied E. (2001). Dietary inclusion of crystalline D-and L-methionine: Effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon (Salmon salar L.). Aquacult. Nutr, 7: 169-181. https://doi.org/10.1046/j.1365-2095.2001.00169.x
  145. Sviridov D., Mukhamedova N., Miller Y.I. (2020). Lipid rafts as a therapeutic target: thematic review series: biology of lipid rafts. J. Lipid Res., 61: 687–695.
  146. Tacon A.G.J., Hasan M.R., Metian M. (2011). Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fish. Aquacult. Tech. Pap., 564: I.
  147. Takakuwa F., Murashita K., Noguchi Y., Inui T., Watanabe K., Sugiyama S., Yamada S., Biswas A., Tanaka H. (2023). Effects of long-term feeding of fishmeal-free diet on growth parameters, bile acid status, and bile acid-related gene expression of yearling red sea bream, Pagrus major (Temminck & Schlegel, 1843). Aquaculture, 570: 739444.
  148. Takase M., Ushio H. (2018). Changes in intestinal gene expression of zebrafish (Danio rerio) related to sterol uptake and excretion upon β-sitosterol administration. Fishes, 3: 1.
  149. Tong S., Wang L., Kalhoro H., Volatiana J.A., Shao Q. (2020). Effects of supplementing taurine in all‐plant protein diets on growth performance, serum parameters, and cholesterol 7α‐ hydroxylase gene expression in black sea bream, Acanthopagrus schlegelii. J. World Aquac. Soc., 51: 990–1001.
  150. Torstensen B.E., Espe M., Sanden M., Stubhaug I., Waagbø R., Hemre G.-I., Fontanillas R., Nordgarden U., Hevrøy E.M., Olsvik P. (2008). Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture, 285: 193–200.
  151. Turchini G.M., Francis D.S. (2009). Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil-or linseed oil-based diets. Br. J. Nutr., 102: 69–81.
  152. Twibell R.G., Wilson R.P. (2004). Preliminary evidence that cholesterol improves growth and feed intake of soybean meal-based diets in aquaria studies with juvenile channel catfish, Ictalurus punctatus. Aquaculture, 236: 539–546.
  153. Uyisenga A., Liang H., Ren M., Huang D., Xue C., Yin H., Mi H. (2023). The effects of replacing fish meal with enzymatic soybean meal on the growth performance, whole-body composition, and health of juvenile Gibel carp (Carassius auratus gibelio). Fishes, 8: 423.
  154. Valente L.M.P., Cabral E.M., Sousa V., Cunha L.M., Fernandes J.M.O. (2016). Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture, 453: 77–85.
  155. Valente L.M.P., Linares F., Villanueva J.L.R., Silva J.M.G., Espe M., Escórcio C., Pires M.A., Saavedra M.J., Borges P., Medale F. (2011). Dietary protein source or energy levels have no major impact on growth performance, nutrient utilisation or flesh fatty acids composition of market-sized Senegalese sole. Aquaculture, 318:128–137.
  156. Wang J., Mitsche M.A., Lütjohann D., Cohen J.C., Xie X.-S., Hobbs H.H. (2015). Relative roles of ABCG5/ABCG8 in liver and intestine [S]. J. Lipid Res., 56: 319–330.
  157. Wang Y., Yu S., Wang Y., Che J., Zhao L., Bu X., Yang Y. (2016). Effect of replacing fish meal with soybean meal on growth, feed utilization and nitrogen and phosphorus excretion of juvenile Pseudobagrus ussuriensis. Aquacult. Res., 47: 3145–3155.
  158. Wei H.C., Xing S.J., Chen P., Wu X.F., Gu X., Luo L., Liang X.F., Xue M. (2020). Plant protein diet-induced hypoimmunity by affecting the spiral valve intestinal microbiota and bile acid enterohepatic circulation in Amur sturgeon (Acipenser schrenckii). Fish Shellfish Immunol., 106: 421–430.
  159. Welker T., Barrows F., Overturf K., Gaylord G., Sealey W. (2016). Optimizing zinc supplementation levels of rainbow trout (Oncorhynchus mykiss) fed practical type fishmeal‐ and plant‐based diets. Aquacult. Nutr., 22: 91–108.
  160. Wiszniewski G., Jarmołowicz S., Hassaan M.S., Soaudy M.R., Kamaszewski M., Szudrowicz H., Terech-Majewska E., Pajdak-Czaus J., Wiechetek W., Siwicki A.K. (2022). Beneficial effects of dietary papain supplementation in juvenile sterlet (Acipenser ruthenus): Growth, intestinal topography, digestive enzymes, antioxidant response, immune response, and response to a challenge test. Aquacult. Rep., 22: 100923.
  161. Xu H., Zhang Q., Kim S.-K., Liao Z., Wei Y., Sun B., Jia L., Chi S., Liang M. (2020). Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer (Takifugu rubripes). Br. J. Nutr., 123:, 1345–1356.
  162. Yaghoubi M., Mozanzadeh M.T., Marammazi J.G., Safari O., Gisbert E. (2016). Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture, 464: 50–59.
  163. Yao S., Li W., Cai C., Wang C., Kang J., Hu H., Wu P., Cao X., Ye Y. (2024). Comparative Study on the Effects of Four Plant Protein Sources on the Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. Aquacult. Nutr., 2024: 1–17.
  164. Yao T., Gu X., Liang X., Fall F.N., Cao A., Zhang S., Guan Y., Sun B., Xue M. (2021). Tolerance assessment of dietary bile acids in common carp (Cyprinus carpio L.) fed a high plant protein diet. Aquaculture, 543: 737012.
  165. Ye H., Xu M., Chen L., Tan X., Chen S., Zou C., Sun Z., Liu Q., Ye C., Wang A. (2019). Effects of dietary plant protein sources influencing hepatic lipid metabolism and hepatocyte apoptosis in hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). Aquaculture, 506: 437–444.
  166. Ye J., Liu X., Wang Z., Wang K. (2011). Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder, Paralichthys olivaceus. Aquacult. Int., 19: 143–153.
  167. Ytrestøyl T., Aas T.S., Åsgård T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448: 365–374.
  168. Yu D.H., Gong S.Y., Lin Y.C., Yuan Y.C. (2014). Partial replacement of fish meal by several plant proteins with or without iron and lysine supplement in diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquacult. Nutr., 20: 205–212.
  169. Yuan L., Zhang F., Jia S., Xie J., Shen M. (2020). Differences between phytosterols with different structures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells. J. Funct. Foods, 65: 103715.
  170. Yun B., Xue M., Wang J., Sheng H., Zheng Y., Wu X., Li J. (2014). Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon, Acipenser baerii Brandt. Aquacult. Nutr., 20: 69–78.
  171. Zhang J., Zhong L., Peng M., Chu W., Liu Z., Dai Z., Hu Y. (2019). Replacement of fish meal with soy protein concentrate in diet of juvenile rice field eel, Monopterus albus. Aquacult. Rep., 15: 100235.
  172. Zhang L., Zhang M., Yang X., Chen L., Cheng W., Liang P. (2020). Changes in lipid content with roasting temperature of large yellow croaker (Larimichthys crocea) ROE. Ital. J. Food Sci., 32.
  173. Zhang Y., Chen P., Liang X.F., Han J., Wu X.F., Yang Y.H., Xue M. (2019). Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kB-caspase signal pathway. Fish Shellfish Immunol., 90: 223–234.
  174. Zhang Y., Øverland M., Shearer K.D., Sørensen M., Mydland L.T., Storebakken T. (2012). Optimizing plant protein combinations in fish meal-free diets for rainbow trout (Oncorhynchus mykiss) by a mixture model. Aquaculture, 360: 25–36.
  175. Zhao L., Luo J., Liu Q., Du J., Yang H., Li B., Zhou Y., Yang S. (2020). Different diets can affect the digestion and immunity of common carp (Cyprinus carpio) according to enzyme activity assay and transcriptome sequencing. Aquaculture, 523: 735176.
  176. Zhao W., Liu Z.-L., Niu J. (2021). Growth performance, intestinal histomorphology, body composition, hematological and antioxidant parameters of Oncorhynchus mykiss were not detrimentally affected by replacement of fish meal with concentrated dephenolization cottonseed protein. Aquacult. Rep., 19: 100557.
  177. Zhao X., Wang Y., Wang X., Ye J. (2021). Growth performance, plasma components, and intestinal barrier in grouper (Epinephelus coioides) are altered by dietary fish meal replacement with extruded soybean meal. Aquacult. Rep., 21: 100863.
  178. Zhou J.S., Chen Y.S., Ji H., Yu E.M. (2017). The effect of replacing fish meal with fermented meal mixture of silkworm pupae, rapeseed and wheat on growth, body composition and health of mirror carp (Cyprinus carpio var. Specularis). Aquacult. Nutr., 23: 741–754.
  179. Zhu T., Corraze G., Plagnes-Juan E., Quillet E., Dupont-Nivet M., Skiba-Cassy S. (2018). Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am. J. Physiol. Regul. Integr. Comp. Physiol., 314: R58–R70.
  180. Zhu T., Corraze G., Plagnes-Juan E., Skiba-Cassy S. (2020). Cholesterol metabolism regulation mediated by SREBP-2, LXRα and miR-33a in rainbow trout (Oncorhynchus mykiss) both in vivo and in vitro. PloS One, 15: e0223813.
DOI: https://doi.org/10.2478/aoas-2025-0065 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Nov 24, 2024
Accepted on: Jun 2, 2025
Published on: Aug 20, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Agyenim Godfred Boateng, Bissih Fred, Asare Derrick, Beiping Tan, Junming Deng, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT