References
- Álvarez-Rodríguez J., Monleón E., Sanz A., Badiola J.J., Joy M. (2012). Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Res. Vet. Sci., 92: 247–253.
- Arnold G.W., Maller R.A. (1977). Effects of nutritional experience in early and adult life on the performance and dietary habits of sheep. Appl. Anim. Ethol., 3: 5–26.
- Baldwin R.L. VI, McLeod K.R., Klotz J.L., Heitmann R.N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy Sci., 87: E55–E65.
- Belanche A., Cooke J., Jones E., Worgan H.J., Newbold C.J. (2018). Short- and long-term effects of conventional and artificial rearing strategies on the health and performance of growing lambs. Animal, 13: 740–749.
- Belanche A., Yáñez-Ruiz D.R., Detheridge A.P., Griffith G.W., Kingston-Smith A.H., Newbold C.J. (2019). Maternal versus artificial rearing shapes the rumen microbiome having minor long-term physiological implications. Environ. Microbiol., 21: 4360–4377.
- Bertens C.A., Mutsvangwa T., Van Kessel A.G., Penner G.B. (2023). Effect of sodium concentration and mucosal pH on apical uptake of acetate and butyrate, and barrier function of the isolated bovine ruminal epithelium. J. Dairy Sci., 106: 7310–7319.
- Burakowska K., Górka P., Penner G.B. (2021 a). Effects of canola meal inclusion rate in starter mixtures for Holstein heifer calves on dry matter intake, average daily gain, ruminal fermentation, plasma metabolites, and total-tract digestibility. J. Dairy Sci., 104: 8736–8745.
- Burakowska K., Penner G.B., Flaga J., Przybyło M., Barć J., Wojciechowska-Puchałka J., Wojtysiak D., Kowalski Z.M., Górka P. (2021 b). Canola meal or soybean meal as protein source and the effect of microencapsulated sodium butyrate supplementation in calf starter mixture. II. Development of the gastrointestinal tract. J. Dairy Sci., 104: 6663–6676.
- Carballo O.C., Khan M.A., Knol F.W., Lewis S.J., Stevens D.R., Laven R.A., McCoard S.A. (2019). Impact of weaning age on rumen development in artificially reared lambs. J. Anim. Sci., 97: 3498–3510.
- Connor E.E., Baldwin R.L. IV, Li C.J., Li R.W., Chung H. (2013). Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth. Funct. Integr. Genomics, 13: 133–142.
- Conway E.J. (1962). Ammonia. General method. In: Microdiffusion analysis and volumetric error. Crosby Lockwood and Son Ltd., London, UK: 98–100.
- Downey B.C., Tucker C.B. (2023). Early life access to hay does not affect later life oral behavior in feed-restricted heifers. J. Dairy Sci., 106: 5672–5686.
- Espenshade P.J. (2013). Cholesterol synthesis and regulation. Encyclopedia of Biological Chemistry, pp. 516–520.
- Fall C.H.D., Kumaran K. (2019). Metabolic programming in early life in humans. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 374: 20180123.
- Fennessy P.F., Woodlock M.R., Jagusch K.T. (1972). The effect of early weaning on the concentrations of non-esterified fatty acids and glucose in the plasma of lambs. N. Z. J. Agric. Res., 15: 802–807.
- Gelsinger S.L., Coblentz W.K., Zanton G.I., Ogden R.K., Akins M.S. (2019). Ruminal in situ disappearance and whole-tract digestion of starter feeds in calves before, during, and after weaning. J. Dairy Sci., 102: 2196–2206.
- Gelsinger S.L., Coblentz W.K., Zanton G.I., Ogden R.K., Akins M.S. (2020). Physiological effects of starter-induced ruminal acidosis in calves before, during, and after weaning. J. Dairy Sci., 103: 2762–2772.
- Gindri M., Leite R.F., Härter C.J., da Silva S.P., St-Pierre N., Fernandes M.H.M. da R., Berchielli T.T., Teixeira I.A.M. de A. (2020). Body weight and sex effects on digesta mean retention time in growing Saanen goats. Transl. Anim. Sci., 4: 883–900.
- Hart S.P., Doyle J.J. (1985). Adaptation of early-weaned lambs to high-concentrate diets with three grain sources, with or without sodium bicarbonate. J. Anim. Sci., 61: 975–984.
- He Y., Wang H., Yu Z., Niu W., Qiu Q., Su H., Cao B. (2018). Effects of the gender differences in cattle rumen fermentation on anaerobic fermentation of wheat straw. J. Clean. Prod., 205: 845–853.
- Heinrichs J. (2005). Rumen development in the dairy calf. Adv. Dairy Technol., 17: 179–187.
- Horvath K.C., Miller-Cushon E.K. (2017). The effect of milk-feeding method and hay provision on the development of feeding behavior and non-nutritive oral behavior of dairy calves. J. Dairy Sci., 100: 3949–3957.
- Huuki H., Tapio M., Mäntysaari P., Negussie E., Ahvenjärvi S., Vilkki J., Vanhatalo A., Tapio I. (2022). Long-term effects of early-life rumen microbiota modulation on dairy cow production performance and methane emissions. Fron. Microbiol., 13: 983823.
- INRA (2007). Alimentation des bovins, ovins et caprins. Besoins des animaux – valeurs des aliments. Tables INRA 2007. Editions Quae, France.
- INRA (2019). INRA feeding system for ruminants (2nd Ed.). Wageningen Academic Publishers, Wageningen, the Netherlands, 640 pp.
- Jafari A., Azarfar A., Alugongo G.M., Ghorbani G.R., Mirzaei M., Fadayifar A., Omidi-Mirzaei H., Cao Z., Drackley J.K., Hossieni Ghaffari M. (2021). Milk feeding quantity and feeding frequency: effects on growth performance, rumen fermentation and blood metabolites of Holstein dairy calves. Ital. J. Anim. Sci., 20: 336–351.
- Kaneko J.J., Harvey J.W., Bruss M.L. (2008). Clinical biochemistry of domestic animals. Academic Press, San Diego, USA.
- Khan M.A., Lee H.J., Lee W.S., Kim H.S., Kim S.B., Ki K.S., Ha J.K., Lee H.G., Choi Y.J. (2007). Pre- and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. J. Dairy Sci., 90: 876–885.
- Khan M.A., Bach A., Weary D.M., von Keyserlingk M.A.G. (2016). Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci., 99: 885–902.
- Khan M.A., Burggraaf V.T., Thomson B., Muir P., Lowe K., Koolaard J., Heiser A., Leath S., McCoard S. (2020). Feeding forage or concentrates early in life influences rumen fermentation, metabolic response, immune function and growth of Wagyu × Friesian calves. Anim. Prod. Sci., 60: 1418–1428.
- Knowles T.G., Edwards J.E., Bazeley K.J., Brown S.N., Butterworth A., Warriss P.D. (2000). Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet. Rec., 147: 593–598.
- Krehbiel C.R., Harmon D.L., Schnieder J.E. (1992). Effect of increasing ruminal butyrate on portal and hepatic nutrient flux in steers. J. Anim. Sci., 70: 904–914.
- Laarman A.H., Sugino T., Oba M. (2012). Effects of starch content of calf starter on growth and rumen pH in Holstein calves during the weaning transition. J. Dairy Sci., 95: 4478–4487.
- Lane S.F., Albrecht K.A. (1991). Growth and plasma metabolites of lambs weaned to legume pasture at 28 days of age. J. Anim. Sci., 69: 305–317.
- Lee H.J., Khan M.A., Lee W.S., Yang S.H., Kim S.B., Ki K.S., Kim H.S., Ha J.K., Choi Y.J. (2009). Influence of equalizing the gross composition of milk replacer to that of whole milk on the performance of Holstein calves. J. Anim. Sci., 87: 1129–1137.
- McCarthy R.D., Kesler E.M. (1956). Relation between age of calf, blood glucose and rumen levels of volatile fatty acids and in vitro cellulose digestion. J. Dairy Sci., 39: 1280–1287.
- McCoard S.A., Craigie C.R., Lowe K.A., Koolaard J., Khan A. (2023). Feeding concentrate versus forage-based starter diets during early life to Holstein Friesian bull calves: growth, rumen fermentation, metabolic response, feed efficiency and beef production. N. Z. J. Agric. Res., 67: 604–620.
- Meale S.J., Li S.C., Azevedo P., Derakhshani H., DeVries T.J., Plaizier J.C., Steele M.A., Khafipour E. (2017). Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci. Rep., 7: 198.
- Meaney S. (2014). Epigenetic regulation of cholesterol homeostasis. Front. Genet., 5: 311.
- Miller-Cushon E.K., DeVries T.J. (2015). Invited review: Development and expression of dairy calf feeding behaviour. Canadian J. Animal Sci., 95: 341–350.
- Miller-Cushon E.K., Montoro C., Ipharraguerre I.R., Bach A. (2014). Dietary preference in dairy calves for feed ingredients high in energy and protein. J. Dairy Sci., 97: 1634–1644.
- Munn A., Stewart M., Price E., Peilon A., Savage T., Van Ekris I., Clauss M. (2015). Comparison of gut fill in sheep (Ovis aries) measured by intake, digestibility, and digesta retention compared with measurements at harvest. Can. J. Zool., 93: 747–753.
- Nicol A.M., Sharafeldin M.A. (1975). Observations on the behaviour of single-suckled calves from birth to 120 days. Proc. N. Z. Soc. Anim. Prod., 35: 221–230.
- Nieper B.A., Khan M.A., Ganesh S., Knol F.W., Peterson S.W., Stafford K.J., Stevens D.R., McCoard S.A. (2017). The effects of early access to meal on the behaviour of artificially reared dairy lambs. Proc. N. Z. Soc. Anim. Prod., 77: 18–22.
- Ortega-Reyes L., Provenza F.D., Parker C.F., Hatfield P.G. (1992). Drylot performance and ruminal papillae development of lambs exposed to a high concentrate diet while nursing. Small Rumin. Res., 7: 101–112.
- Poczynek M., Toledo A.F., Silva A.P., Silva M.D., Oliveira G.B., Coelho M.G., Virginio G.F., Polizel D., Costa J.H.C., Bittar C.M.M. (2020). Partial corn replacement by soybean hull, or hay supplementation: Effects of increased NDF in diet on performance, metabolism and behavior of pre-weaned calves. Livest. Sci., 231: 103858.
- Przybyło M., Hummel J., Ortmann S., Codron D., Kohlschein G.-M., Kilga D., Smithyman J., Przybyło U., Świerk S., Hammer S., Hatt J.-M., Górka P., Clauss M. (2019). Digesta passage in nondomestic ruminants: Separation mechanisms in ‘moose-type’ and ‘cattle-type’ species, and seemingly atypical browsers. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 235: 180–192.
- Quigley J.D. III, Caldwell L.A., Sinks G.D., Heitmann R.N. (1991). Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. J. Dairy Sci., 74: 250–257.
- Rapisarda T., Mereu A., Cannas A., Belvedere G., Licitra G., Carpino S. (2012). Volatile organic compounds and palatability of concentrates fed to lambs and ewes. Small Rumin. Res., 103: 120–132.
- Reeskamp L.F., Venema A., Pereira J.P.B., Levin E., Nieuwdorp M., Groen A.K., Defesche J.C., Grefhorst A., Henneman P., Hovingh G.K. (2020). Differential DNA methylation in familial hypercholesterolemia. EBioMedicine, 61: 103079.
- Schurmann B.L., Walpole M.E., Gorka P., Ching J.C.H., Loewen M.E., Penner G.B. (2014). Short-term adaptation of the ruminal epithelium involves abrupt changes in sodium and short-chain fatty acid transport. Am. J. Physiol. Regul. Integr. Comp. Physiol., 307: R802–R816.
- Schwaiger T., Beauchemin K.A., Penner G.B. (2013). Duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: Short-chain fatty acid and lactate absorption, saliva production, and blood metabolites. J. Anim. Sci., 91: 5743–5753.
- Silva N.C.D., Härter C.J., Figueiredo F.O.M., Leite R.F., Neto J.M.S., Negrão J.A., Teixeira I.A.M.A., Resende K. T. (2018). Growing goats of different sexes have distinct metabolic responses to continuous feed restriction. Anim. Prod. Sci., 58: 818–827.
- Soltani M., Kazemi-Bonchenari M., Khaltabadi-Farahani A.H., Afsarian O. (2017). Interaction of forage provision (alfalfa hay) and sodium butyrate supplementation on performance, structural growth, blood metabolites and rumen fermentation characteristics of lambs during pre-weaning period. Anim. Feed Sci. Tech., 230: 77–86.
- Spörndly E., Åsberg T. (2006). Eating rate and preference of different concentrate components for cattle. J. Dairy Sci., 89: 2188–2199.
- Squibb R.C., Provenza F.D., Balph D.F. (1990). Effect of age of exposure on consumption of a shrub by sheep. J. Anim. Sci., 68: 987–997.
- Stabo I.J.F., Roy J.H.B., Gaston H.J. (1966). Rumen development in the calf: 1. The effect of diets containing different proportions of concentrates to hay on rumen development. Br. J. Nutr., 20: 171–188.
- Steele M.A., Croom J., Kahler M., AlZahal O., Hook S.E., Plaizier K., McBride B.W. (2011 a). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 300: R1515–R1523.
- Steele M.A., Vandervoort G., AlZahal O., Hook S.E., Matthews J.C., McBride B.W. (2011 b). Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiol. Genomics, 43: 308–316.
- Steele M.A., Greenwood S.L., Croom J., McBride B.W. (2012). An increase in dietary non-structural carbohydrates alters the structure and metabolism of the rumen epithelium in lambs. Can. J. Anim. Sci., 92: 123–130.
- Steele M.A., Doelman J.H., Leal L.N., Soberon F., Carson M., Metcalf J.A. (2017). Abrupt weaning reduces postweaning growth and is associated with alterations in gastrointestinal markers of development in dairy calves fed an elevated plane of nutrition during the preweaning period. J. Dairy Sci., 100: 5390–5399.
- Świerk S., Przybyło M., Wajsman I., Molik E., Miltko R., Górka P. (2023). Effect of increased intake of concentrates and sodium butyrate supplementation on reticulorumen macroanatomy and reticulorumen fermentation in growing rams. Animal, 17: 100899.
- Takagi M., Yonezawa T., Haga S., Shingu H., Kobayashi Y., Takahashi T., Ohtani Y., Obara Y., Katoh K. (2008). Changes of activity and mRNA expression of urea cycle enzymes in the liver of developing Holstein calves. J. Anim. Sci., 86: 1526–1532.
- Terler G., Poier G., Klevenhusen F., Zebeli Q. (2022). Replacing concentrates with a high-quality hay in the starter feed in dairy calves: I. Effects on nutrient intake, growth performance, and blood metabolic profile. J. Dairy Sci., 105: 2326–2342.
- Terler G., Velik M., Poier G., Sener-Aydemir A., Klevenhusen F., Zebeli Q. (2023). Feeding concentrate with hay of different qualities modulates rumen histology, development of digestive tract as well as slaughter performance and meat quality of young dairy calves. Arch. Anim. Nutr., 77: 171–186.
- Terré M., Pedrals E., Dalmau A., Bach A. (2013). What do preweaned and weaned calves need in the diet: A high fiber content or a forage source? J. Dairy Sci., 96: 5217–5225.
- Udén P., Colucci P.E., Vansoest P.J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta – rate of passage studies. J. Sci. Food Agr., 31: 625–632.
- van Niekerk J.K., Middeldorp M., Guan L.L., Steele M.A. (2021). Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. J. Dairy Sci., 104: 3632–3645.
- Webb L.E., Bak Jensen M., Engel B., van Reenen C.G., Gerrits W.J.J., de Boer I.J.M., Bokkers E.A.M. (2014). Chopped or long roughage: What do calves prefer? Using cross point analysis of double demand functions. PLOS ONE, 9: e88778.
- Yáñez-Ruiz D.R., Hart K.J., Martin-Garcia A.I., Ramos S., Newbold C.J. (2008). Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Aust. J. Exp. Agric., 48: 186–188.
- Yáñez-Ruiz D.R., Macías B., Pinloche E., Newbold C.J. (2010). The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiol. Ecol., 72: 272–278.
- Yáñez-Ruiz D.R., Abecia L., Newbold C.J. (2015). Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front. Microbiol., 6: 1133.
- Zhang L., Zou W., Hu Y., Wu H., Gao Y., Zhang J., Zheng J. (2023). Maternal high-calorie diet feeding programs hepatic cholesterol metabolism and Abca1 promoter methylation in the early life of offspring. J. Nutr. Biochem., 122: 109449.
- Zhao K., Chen Y.H., Penner G.B., Oba M., Guan L.L. (2017). Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle. BMC Genomics, 18: 976.
- Zheng J., Xiao X., Zhang Q., Yu M. (2014). DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life. Br. J. Nutr., 111: 1850–1857.
- Zhou L.Y., Deng M.Q., Zhang Q., Xiao X.H. (2020). Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin. Med. J., 133: 1961–1970.
- Žitnan R., Voigt J., Schönhusen U., Wegner J., Kokardová M., Hagemeister H., Levkut M., Kuhla S., Sommer A. (1998). Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves. Arch. Anim. Nutr., 51: 279–291.