Have a personal or library account? Click to login
Protein Level Reduction in Corn and Soybean Meal-Based Diets Supplemented with Essential Amino Acids During the Fattening Phase of Nile Tilapia Cover

Protein Level Reduction in Corn and Soybean Meal-Based Diets Supplemented with Essential Amino Acids During the Fattening Phase of Nile Tilapia

Open Access
|Oct 2025

References

  1. Ahmad I., Ahmed I., Fatma S., Peres H. (2021). Role of branched-chain amino acids on growth, physiology and metabolism of different fish species: A review. Aquac. Nutr., 27: 1270–1289.
  2. Al-Dubakel A.Y., Taher M.M. (2021). Use of moringa, Moringa oleifera leaf meal as partial replacement of soybean meal in common carp feed. Iraqi J. Aquac., 17.
  3. Ansia I., Drackley J.K. (2020). Graduate Student Literature Review: The past and future of soy protein in calf nutrition. J. Dairy Sci., 103: 7625–7638.
  4. AOAC (2005). Official Methods of Analysis. Washington, DC, USA, Association of Official Analytical Chemists, 18th ed.
  5. APHA (2017). Standard Methods for the Examination of Water and Wastewater. Washington, DC, USA, American Public Health Association, 23rd ed.
  6. Ayyat M.S., Abdel-Rahman G., Ayyat A.M.N., Abdel-Rahman M.S., Al-Sagheer A.A. (2021). Evaluation of leaf protein concentrate from Beta vulgaris and Daucus carota as a substitute for soybean meal in Oreochromis niloticus fingerlings diets. Aquac. Res., 52: 3256–3269.
  7. Bomfim M.A.D., Lanna E.A.T., Donzele J.L., Abreu M.L.T., Ribeiro F.B., Quadros M. (2008 a). Reduction of crude protein with amino acid supplementation, based on ideal protein concept, in diets for Nile tilapia fingerlings. Rev. Bras. Zootec., 37: 1713–1720.
  8. Bomfim M. A.D., Lanna E.A.T., Donzele J.L., Ferreira A.S., Ribeiro F.B., Takishita S.S. (2008 b). Methionine plus cystine requirement, based on ideal protein concept, in diets for Nile tilapia fingerlings. Rev. Bras. Zootec., 37: 783–790.
  9. Boscolo W.R., Hayashi C., Meurer F. (2002). Apparent digestibility of the energy and nutrients of conventional and alternatives foods for Nile tilapia (Oreochromis niloticus). Rev. Bras. Zootec., 31: 539–545.
  10. Botaro D., Furuya W.M., Silva L.C.R., Santos L.D. dos, Silva T.S. de C., Santos V.G. dos. (2007). Dietary protein reduction based on ideal protein concept for Nile tilapia (Oreochromis niloticus) cultured in net pens. Rev. Bras. Zootec., 36: 517–525.
  11. Carneiro W.F., Pandini F., Silva L.C.R., Santos L.D. dos, Rossato K.A., Meurer F. (2017). Digestible protein requirement for Nile tilapia fed with rations based on soybean meal and corn. Acta Sci. Anim. Sci., 39: 343.
  12. Carneiro W.F., Colpini L.M.S., Souza R.C.T. de, Bombardelli R.A., Balen R.E., Meurer F. (2020). Effect of the digestible protein-energy relationship on the growth performance of Nile tilapia (Oreochromis niloticus) fed fishmeal-free diets. Anim. Feed Sci. Technol., 262: 114379.
  13. Costa L. da S., Melo F.P. de, Caorreia E. de S. (2009). Effect of different feeding regimes on the growth of tilapia Chitralada (Oreochromis niloticus Linnaeus, 1757) cultured in cages. Boletim de Pesquisa e Desenvolvimento, 79/Embrapa Meio Ambiente, 35: 285–294.
  14. Coutinho J.J. de O., Neira L.M., de Sandre L.C.G., da Costa J.I., Mar-tins M.I.E.G., Portella M.C., Carneiro D.J. (2018). Carbohydrate-to-lipid ratio in extruded diets for Nile tilapia farmed in net cages. Aquaculture, 497: 520–525.
  15. da Cruz T.P., Michelato M., Dal-Pai-Silva M., de Paula T.G., Mace-do E.A., Peres H., Oliva-Teles A., Urbich A.V., Furuya V.R.B., Furuya W.M. (2021). Growth performance, amino acid retention and mRNA levels of mTORC1 signaling pathway genes in Nile tilapia fingerlings fed protein-bound and crystalline amino acids. Aquaculture, 543: 1–8.
  16. Deck C.A., Salger S.A., Reynolds H.M., Tada M.D., Severance M.E., Ferket P., Egna H.S., Fatema M.K., Haque S.M., Borski R.J. (2023). Nutritional programming in Nile tilapia (Oreochromis niloticus): Effect of low dietary protein on growth and the intestinal microbiome and transcriptome. PLOS ONE, 18: e0292431.
  17. El-Saidy D.M.S D., Gaber M.M.A. (2005). Effect of dietary protein levels and feeding rates on growth performance, production traits and body composition of Nile tilapia, Oreochromis niloticus (L.) cultured in concrete tanks. Aquac. Res., 36: 163–171.
  18. Engdaw F., Geremew A. (2024). Broodstock nutrition in Nile tilapia and its implications on reproductive efficiency. Front. Aquac., 3.
  19. FAO (2024). The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action. Rome, Italy, Food and Agriculture Organization of the United Nations.
  20. Fatan N.A., Sivajothy K., Yossa R. (2023). Comparative estimation of the lysine requirements in two generations of improved strain of Nile tilapia (Oreochromis niloticus) at the grow-out stage. Heliyon, 9: e17221.
  21. Fernandes Junior A.C., Carvalho P.L.P.F. de, Pezzato L.E., Koch J. F.A., Teixeira C.P., Cintra F.T., Damasceno F.M., Amorin R.L., Padovani C.R., Barros M.M. (2016). The effect of digestible protein to digestible energy ratio and choline supplementation on growth, hematological parameters, liver steatosis and size-sorting stress response in Nile tilapia under field condition. Aquaculture, 456: 83–93.
  22. Furuya W.M., Botaro D., Macedo R.M.G. de, Santos V.G. dos, Silva L.C.R., Silva T.D.C., Furuya V.R.B., Sales P.J.P. (2005). Ideal protein concept for dietary protein reduction of juvenile Nile tilapia (Oreochromis niloticus). Rev. Bras. Zootec., 34: 1433–1441.
  23. Furuya W.M., Furuya V.R.B. (2010). Nutritional innovations on amino acids supplementation in Nile tilapia diets. R. Bras. Zootec., 39: 88–94.
  24. Furuya W.M., Cruz T.P. da, Gatlin D.M. (2023). Amino acid requirements for Nile tilapia: An update. Animals, 13: 900.
  25. Glencross B.D., Baily J., Berntssen M.H.G., Hardy R., MacKenzie S., Tocher D.R. (2020). Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquac., 12: 703–758.
  26. Gonçalves G.S., Pezzato L.E., Barros M.M., Hisano H., Rosa M.J.S. (2009). Level of digestible protein and digestible energy in diets for Nile tilapia formulated based on the concept of ideal protein. Rev. Bras. Zootec., 38: 2289–2298.
  27. Green B.W., Rawles S.D., Schrader K.K., Gaylord T.G., McEntire M.E. (2019). Effects of dietary protein content on hybrid tilapia (Oreochromis aureus × O. niloticus) performance, common microbial off-flavor compounds, and water quality dynamics in an outdoor biofloc technology production system. Aquaculture, 503: 571–582.
  28. Hussain S.M., Bano A.A., Ali S., Rizwan M., Adrees M., Zahoor A.F., Sarker P.K., Hussain M., Arsalan M.Z. ul H., Yong J.W.H., Naeem A. (2024). Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon, 10: e26573.
  29. Khan K.U., Rodrigues A.T., Mansano C.F.M., Queiroz D.M. de A., Sakomura N.K., Romaneli R. de S., Do Nascimento T.M.T., Fernandes J.B.K. (2019). Dietary protein quality and proper protein to energy ratios: A bioeconomic approach in aquaculture feeding practices. Lat. Am. J. Aquat. Res., 47: 232–239.
  30. Koch J.F.A., Barros M.M., Teixeira C.P., Carvalho P.L.P.F., Fernandes Junior A.C., Cintra F.T., Pezzato L.E. (2017). Protein-to-energy ratio of 21.43 g MJ−1 improves growth performance of Nile tilapia at the final rearing stage under commercially intensive rearing conditions. Aquac. Nutr., 23: 560–570.
  31. Kohli V., Singha S. (2024). Protein digestibility of soybean: how processing affects seed structure, protein and non-protein components. Discover Food, 4.
  32. Konnert G.D.P., Gerrits W.J.J., Gussekloo S.W.S., Schrama J.W. (2022). Balancing protein and energy in Nile tilapia feeds: A meta-analysis. Rev. Aquac., 14: 1757–1778.
  33. Li X., Han T., Zheng S., Wu G. (2021). Nutrition and Functions of Amino Acids in Aquatic Crustaceans. In: Amino Acids in Nutrition and Health. Amino Acids in the Nutrition of Companion, Zoo and Farm Animals, Wu G. (eds). Springer, 1285: 169–198.
  34. Liu W., Jiang M., Wu J.P., Wu F., Tian J., Yang C.G., Wen H. (2017). Dietary protein level affects the growth performance of large male genetically improved farmed tilapia, Oreochromis niloticus, reared in fertilized freshwater cages. J. World Aquac. Soc., 48: 718–728.
  35. Liu W., Wen H., Luo Z. (2018). Effect of dietary protein levels and feeding rates on the growth and health status of juvenile genetically improved farmed tilapia (Oreochromis niloticus). Aquac. Int., 26: 153–167.
  36. Ma M., Hu Q. (2024). Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac., 16: 818–835.
  37. Magbanua T.O., Ragaza J.A. (2024). Selected dietary plant-based proteins for growth and health response of Nile tilapia Oreochromis niloticus. Aquac. Fish., 9: 3–19.
  38. Mashhadizadeh N., Khezri S., Esfahani D.E., Mohammadzadeh S., Ahmadifar E., Ahmadifar M., Moghadam M.S., El-Haroun E. (2024). Enhancing growth performance, antioxidant defense, immunity response, and resistance against heat stress in Nile tilapia (Oreochromis niloticus) fed Saccharomyces boulardii and/or Bifidobacterium bifidum. Aquac. Rep., 39: 102462.
  39. Matos É.J.A., Urbinati E.C., Meurer F. (2024). Farinha de folhas na nutrição de peixes/Leaf meal in fish nutrition. Atena Editora. Meurer F., Novodworski J., Bombardelli R.A. (2025). Protein requirements in Nile tilapia (Oreochromis niloticus) during production and reproduction phases. Aquac. Fish., 10: 171–182.
  40. Moreira A.G.L., Teixeira E.G., Carreiro C.R.P., Moreira R.L. (2010). Efficacy of eugenol extracted from the plant Eugenia aromatica as an anesthetic for the biometry procedures in Nile tilapia (Oreochromis niloticus) adults. Acta Sci. Anim. Sci., 32: 419–423.
  41. Moyo N.A.G., Rapatsa-Malatji M.M. (2023). A review and meta-analysis of selected plant protein sources as a replacement of fishmeal in the diet of tilapias. Ann. Anim. Sci., 23: 681–690.
  42. Mugwanya M., Dawood M.A.O., Kimera F., Sewilam H. (2022). Updating the role of probiotics, prebiotics, and synbiotics for tilapia aquaculture as leading candidates for food sustainability: a review. Probiotics Antimicrob. Proteins., 14: 130–157.
  43. Novodworski J., Matos É.J.A., Gonçalves R.M., Bombardelli R.A., Meurer F. (2024). Protein requirements of fattening Nile tilapia (Oreochromis niloticus) fed fish meal-free diets. Aquacult. J., 4: 135–147.
  44. NRC (2011). Nutrient Requirements of Fish and Shrimp. Washington, DC, USA, National Academies Press.
  45. Nunes L.J.L., da Silva Campos C.V.F., da Silva S.M.B.C., Gálvez A.O., Brito L.O., dos Santos J.F. (2024). The culture of Nile tilapia (Oreochromis niloticus) juvenile at different culture technologies: autotrophic, bioflocs and synbiotic. Aquaculture, 588: 740912.
  46. Oliveira M.M., Ribeiro T., Orlando T.M., de Oliveira D.G.S., Drumond M.M., de Freitas R.T.F., Rosa P.V. (2014). Effects crude protein levels on female Nile tilapia (Oreochromis niloticus) reproductive performance parameters. Anim. Reprod. Sci., 150: 62–69.
  47. Peres H., Oliva A. (2017). Protein and amino acid nutrition of marine fish species. In: Investigación y Desarrollo en Nutrición Acuícola, Cruz-Suárez L.E., Ricque-Marie D., Tapia-Salazar M., Nieto-López M.G., Villarreal-Cavazos D.A, Gamboa-Delgado J., López Acuña L.M., Galaviz-Espinoza M. (eds). Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 438–492.
  48. Peres H., Freitas J.M.A., Carvalho P.L.P., Furuya W.M., Satori M.M.P., Oliva-Teles A., Pezzato L.E., Barros M.M. (2022). Growth performance and metabolic responses of Nile tilapia fed diets with different protein to energy ratios. Aquaculture, 547: 737493.
  49. Pezzato L.E., Miranda E.C. de, Barros M.M., Pinto L.G.Q., Furuya W.M., Pezzato A.C. (2002). Digestibilidade Aparente de Ingredientes pela Tilápia do Nilo (Oreochromis niloticus). Rev. Bras. Zootec., 31: 1595–1604.
  50. Ragab S., Hoseinifar S.H., Doan H.V., El-Haroun E. (2024). Evaluation of distillers dried grains with solubles in aquafeeds – a review. Ann. Anim. Sci., 24: 65–75.
  51. Ramakrishnan G.S., Pradhan C., Singh A.K., Das S., Pillai D., Mohanta K.N. (2023). Effect of alpha-ketoglutarate supplementation on growth, antioxidant capacity, gene expression and amino acid profile in Nile tilapia (Oreochromis niloticus) under varying protein diets. Anim. Feed Sci. Technol., 306: 115808.
  52. Righetti J.S., Furuya W.M., Conejero C.I., Graciano T.S., Vidal L.V.O., Michellato M. (2011). Protein reduction in diets for Nile tilapia by amino acids supplementation based on the ideal protein concept. Rev. Bras. Zootec., 40: 469–476.
  53. Sakomura N.K., Rostagno H.S. (2016). Métodos de Pesquisa em Nutrição de Monogástricos. Jaboticabal, Brasil, FUNEP, 2nd ed., 262 pp.
  54. Santos P. de O., Souza E.O. de, Assis L.C. de, Pierro P.C.C., Bolzan R.P., Demier L.C., Junior J.G.V., Mendonça P.P. (2022). Use of Eugenol for anesthesia of Oreochromis niloticus. Braz. J. Dev., 8: 64251–64260.
  55. Schrama J.W., Haidar M.N., Geurden I., Heinsbroek L.T.N., Kaushik S.J. (2018). Energy efficiency of digestible protein, fat and carbohydrate utilization for growth in rainbow trout and Nile tilapia. Br. J. Nutr., 119: 782–791.
  56. Teodósio R., Engrola S., Colen R., Masagounder K., Aragão C. (2020). Optimizing diets to decrease environmental impact of Nile tilapia (Oreochromis niloticus) production. Aquac. Nutr., 26: 422–431.
  57. Tesfaye G., Curto M., Meulenbroek P., Englmaier G.K., Tibihika P.D., Alemayehu E., Getahun A., Meimberg H. (2021). Genetic diversity of Nile tilapia (Oreochromis niloticus) populations in Ethiopia: insights from nuclear DNA microsatellites and implications for conservation. BMC Ecol. Evol., 21.
  58. Wang Q., Xu Z., Ai Q. (2021). Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. Anim. Nutr., 7: 716–727.
  59. Xing S., Liang X., Zhang X., Oliva-Teles A., Peres H., Li M., Wang H., Mai K., Kaushik S. J., Xue M. (2024). Essential amino acid requirements of fish and crustaceans, a meta-analysis. Rev. Aquac., 16: 1069–1086.
  60. Yilmaz S., Ergün S., Çelik E. Ş., Banni M., Ahmadifar E., Dawood M.A.O. (2021). The impact of acute cold-water stress on blood parameters, mortality rate and stress-related genes in Oreochromis niloticus, Oreochromis mossambicus and their hybrids. J. Therm. Biol., 100: 103049.
  61. Yimer A., Tadesse Z. (2022). Protein digestibility status of locally available feed ingredients fed to Nile tilapia (Oreochromis niloticus) in the hatchery, Sebeta, Ethiopia. Afr. J. Agric. Res., 18: 45–51.
  62. Youssef S., Salem S.M.R., Mahmoud R.E., Mohamed T.I. (2023). Effect of protein reduction with indispensable amino acid supplementation at different levels in practical diets of Nile tilapia (Oreochromis niloticus) fish. Mansoura Vet. Med. J., 23.
  63. Zeng N., Jiang M., Wen H., Liu W., Wu F., Tian J., Yu L., Lu X., Guo Z. (2021). Effects of water temperatures and dietary protein levels on growth, body composition and blood biochemistry of juvenile GIFT tilapia (Oreochromis niloticus). Aquac. Nutr., 27: 240–251.
DOI: https://doi.org/10.2478/aoas-2025-0055 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1565 - 1574
Submitted on: Dec 5, 2024
Accepted on: May 12, 2025
Published on: Oct 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jailson Novodworski, Émerson José Alves Matos, Rafaela Mocochinski Gonçalves, Robie Allan Bombardelli, Fábio Meurer, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.