Have a personal or library account? Click to login
The role of encapsulated essential oils in reducing methane production from ruminant animals – a review Cover

The role of encapsulated essential oils in reducing methane production from ruminant animals – a review

Open Access
|Jun 2025

References

  1. Abdelsattar M.M., Zhao W., Saleem A.M., Kholif A.E., Vargas-Bello-Pérez E., Zhang N. (2023). Physical, metabolic, and microbial rumen development in goat kids: a review on the challenges and strategies of early weaning. Animals, 13: 2420.
  2. Adejoro F.A., Hassen A., Akanmu A.M. (2019 a). Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals, 9: 863.
  3. Adejoro F.A., Hassen A., Thantsha M.S. (2019 b). Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition. Asian-Australas. J. Anim. Sci., 32: 977–987.
  4. Aguiar M.C.S., Graças Fernandes da Silva M.F. das, Fernandes J.B., Forim M.R. (2020). Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep., 10: 11799.
  5. Ahmad M.M. (2023). Effects of supplementation of encapsulated essential oil blend to dairy cow rations on in vitro rumen fermentation and digestibility. Master thesis, Selcuk University, Türkiye.
  6. Ahmed M.G., El-Zarkouny S.Z., El-Shazly K.A., Sallam S.M.A. (2014). Impact of essential oils blend on methane emission, rumen fermentation characteristics and nutrient digestibility in Barki sheep. J. Agric. Sci., 6: 144.
  7. Alabi J.O., Wuaku M., Anotaenwere C.C., Okedoyin D.O., Adelusi O.O., Ike K.A., Gray D., Kholif A.E., Subedi K., Anele U.Y. (2024). A mixture of prebiotics, essential oil blends, and onion peel did not affect greenhouse gas emissions or nutrient degradability, but altered volatile fatty acids production in dairy cows using rumen simulation technique (RUSITEC). Fermentation, 10: 324.
  8. Alemu A.W., Romero-Pérez A., Araujo R.C., Beauchemin K.A. (2019). Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals, 9: 21.
  9. Al-Hamayda A., Abu-Jdayil B., Ayyash M., Tannous J. (2023). Advances in microencapsulation techniques using Arabic gum: A comprehensive review. Ind. Crops Prod., 205: 117556.
  10. Ali B., Al-Wabel N.A., Shams S., Ahamad A., Khan S.A., Anwar F. (2015). Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed., 5: 601–611.
  11. Altay Ö., Köprüalan Ö., İlter I., Koç M., Ertekin F.K., Jafari S.M. (2024). Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit. Rev. Food Sci. Nutr., 64: 1139–1157.
  12. Amin N., Tagliapietra F., Arango S., Guzzo N., Bailoni L. (2021). Free and microencapsulated essential oils incubated in vitro: ruminal stability and fermentation parameters. Animals, 11: 180.
  13. Ansari Z., Goomer S. (2022). Natural gums and carbohydrate-based polymers: potential encapsulants. Indo Global J. Pharm. Sci., 12: 01–20.
  14. Araújo J.S.F. de, Souza E.L. de, Oliveira J.R., Gomes A.C.A., Kotzebue L.R.V., Silva Agostini D.L. da, Oliveira D.L.V. de, Mazzetto S.E., Silva A.L. da, Cavalcanti M.T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int. J. Biol. Macromol., 143: 991–999.
  15. Arias M.J.L., López A., Vilaseca M., Vallès B., Prieto R., Simó M., Valle J.A.B., Valle R.D.C.S.C., Bezerra F.M., Bellalta J.P. (2021). Influence of chitosan characteristics in the microencapsulation of essential oils. J. Biomed. Sci. Eng., 14: 119–129.
  16. Asbahani A.E., Miladi K., Badri W., Sala M., Addi E.H.A., Casabianca H., Mousadik A.E., Hartmann D., Jilale A., Renaud F.N.R., Renaud F.N.R., Elaissari A. (2015). Essential oils: From extraction to encapsulation. Int. J. Pharm., 483: 220–243.
  17. Bačėninaitė D., Džermeikaitė K., Antanaitis R. (2022). Global warming and dairy cattle: how to control and reduce methane emission. Animals, 12: 2687.
  18. Bakry A.M., Abbas S., Ali B., Majeed H., Abouelwafa M.Y., Mousa A., Liang L. (2016). Microencapsulation of Oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf., 15: 143–182.
  19. Bamidele O.P., Emmambux M.N. (2021). Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit. Rev. Food Sci. Nutr., 61: 3100–3118.
  20. Baranauskaite J., Ockun M.A., Uner B., Tas C., Ivanauskas L. (2021). Effect of the amount of polysorbate 80 and oregano essential oil on the emulsion stability and characterization properties of sodium alginate microcapsules. Molecules, 26: 6304.
  21. Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14: s2–s16.
  22. Belanche A., la Fuente G. de, Newbold C.J. (2014). Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol., 90: 663–677.
  23. Benavides S., Cortés P., Parada J., Franco W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem., 204: 77–83.
  24. Benchaar C., Greathead H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol., 166–167: 338–355.
  25. Blasi P. (2019). Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Investig, 49: 337–346.
  26. Botia-Carreño E.O., Elghandour M.M.M.Y., Khusro A., Velazquez D.R., Kreuzer-Redmer S., Salem A.Z.M. (2024). Nano-encapsulated Yucca extract as feed additives: Ruminal greenhouse gas emissions of three forages. AMB Express, 14: 142.
  27. Brown A., Mettetal A., Hettiarachchi D. (2022). Sandalwood – Perfumery. In: Materials Horizons: From Nature to Nanomaterials. Springer, Singapore, pp. 449–461.
  28. Brunetto A.L.R., Giacomelli C.M., Favero J.F., Bissacotti B.F., Copeti P.M., Morsch V.M., Oliveira F. de C. de, Wagner R., Alves R., Pereira W.A.B., Vedovatto M., Fritzen A., Kozloski G. V., Zotti C.A., Silva A.S. Da (2023). Phytogenic blend in the diet of growing Holstein steers: Effects on performance, digestibility, rumen volatile fatty acid profile, and immune and antioxidant responses. Anim. Feed Sci. Technol., 297: 115595.
  29. Calsamiglia S., Busquet M., Cardozo P.W., Castillejos L., Ferret A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci., 90: 2580–2595.
  30. Cammack K.M., Austin K.J., Lamberson W.R., Conant G.C., Cunningham H.C. (2018). Tiny but mighty: The role of the rumen microbes in livestock production. J. Anim. Sci., 96: 752–770.
  31. Capasso V., Lotito D., Pugliese G., Ruocco R.A., Musco N. (2017). Essential oils and methanogenesis. A review. J. Nutr. Ecol. Food Res., 4: 107–127.
  32. Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J., Chávez-Martínez A. (2014). Rumen microorganisms and fermentation. Arch. Med. Vet., 46: 349–361.
  33. Chiriac A.P., Rusu A.G., Nita L.E., Chiriac V.M., Neamtu I., Sandu A. (2021). Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics, 13: 631.
  34. Choi Y., Lee S.J., Kim H.S., Eom J.S., Jo S.U., Guan L.L., Lee S.S. (2024). Metataxonomic and metabolomic profiling revealed Pinus koraiensis cone essential oil reduced methane emission through affecting ruminal microbial interactions and host-microbial metabolism. Anim. Microbiome, 6: 1–22.
  35. Choudhury N., Meghwal M., Das K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food. Front., 2: 426–442.
  36. Choudhury P.K., Jena R., Tomar S.K., Puniya A.K. (2022). Reducing enteric methanogenesis through alternate hydrogen sinks in the rumen. Methane, 1: 320–341.
  37. Cimino C., Maurel O.M., Musumeci T., Bonaccorso A., Drago F., Souto E.M.B., Pignatello R., Carbone C. (2021). Essential Oils: pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics, 13: 327.
  38. Cobellis G., Trabalza-Marinucci M., Yu Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ., 545–546: 556–568.
  39. Culas M.S., Popovich D.G., Rashidinejad A. (2024). Recent advances in encapsulation techniques for cinnamon bioactive compounds: A review on stability, effectiveness, and potential applications. Food Biosci., 57: 103470.
  40. Danielsson R., Dicksved J., Sun L., Gonda H., Müller B., Schnürer A., Bertilsson J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol., 8: 00226.
  41. Dean J.F., Middelburg J.J., Röckmann T., Aerts R., Blauw L.G., Egger M., Jetten M.S.M., Jong A.E.E. de, Meisel O.H., Rasigraf O., Slomp C.P., in’t Zandt M.H., Dolman A.J. (2018). Methane feedbacks to the global climate system in a warmer world. Rev. Geophys., 56: 207–250.
  42. Dewanckele L., Toral P.G., Vlaeminck B., Fievez V. (2020). Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J. Dairy Sci., 103: 7655–7681.
  43. Dierings de Souza E.J., Kringel D.H., Guerra Dias A.R., Rosa Zavareze E. da (2021). Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr. Polym., 265: 118068.
  44. Domian E., Brynda-Kopytowska A., Cenkier J., Świrydow E. (2015). Selected properties of microencapsulated oil powders with commercial preparations of maize OSA starch and trehalose. J. Food Eng., 152: 72–84.
  45. Eksi G., Kurbanoglu S., Erdem S.A. (2020). Analysis of diterpenes and diterpenoids. Recent Adv. Nat. Prod. Anal., 313–345.
  46. El-Zaiat H.M., Kholif A.E., Moharam M.S., Attia M.F., Abdalla A.L., Sallam S.M.A. (2020). The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Rumin. Res., 193: 106259.
  47. Estevinho B.N., Rocha F., Santos L., Alves A. (2013). Microencapsulation with chitosan by spray drying for industry applications - A review. Trends Food Sci. Technol., 31: 138–155.
  48. Fathi M., Mozafari M.R., Mohebbi M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol., 23: 13–27.
  49. Fernandes R.V.D.B., Borges S.V., Botrel D.A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym., 101: 524–532.
  50. Gagen E.J., Denman S.E., McSweeney C.S. (2015). Acetogenesis as an alternative to methanogenesis in the rumen. In: Livestock Production and Climate Change. CABI, pp. 292–303.
  51. Garba A.M., Fırıncıoğlu S.Y. (2023). Role of encapsulation nutrients for improvement of ruminant performance and ruminant derived-products. Eurasian J. Agric. Res., 7: 109–126.
  52. Ghassemi Nejad J., Ju M.-S., Jo J.-H., Oh K.-H., Lee Y.-S., Lee S.-D., Kim E.-J., Roh S., Lee H.- G. (2024). Advances in methane emission estimation in livestock: a review of data collection methods, model development and the role of AI technologies. Animals, 14: 435.
  53. Giacomelli C.M., Marchiori M.S., Nascimento A.L. do, Vitt M.G. de, Molosse V.L., Oliveira F. de C. de, Wagner R., Milarch C.F., Vedovatto M., Silva A.S. da (2023). Encapsulated pepper blend in the diet of confined Holstein bullocks: effect on ruminal volatile fatty acid profiles, growth performance, and animal health. Trop. Anim. Health Prod., 55: 114.
  54. González-Reza R.M., Hernández-Sánchez H., Zambrano-Zaragoza M.L., Gutiérrez-López G.F., Del-Real A., Quintanar-Guerrero D., Velasco-Bejarano B. (2020). Influence of stabilizing and encapsulating polymers on antioxidant capacity, stability, and kinetic release of thyme essential oil nanocapsules. Foods, 9: 1884.
  55. Gray D., Dele P.A., Alabi J.O., Adelusi O.O., Wuaku M., Okedoyin D.O., Anotaenwere C.C., Ike K.A., Oderinwale O.A., Kholif A.E., Anele U.Y. (2025). Comparative properties of anise, clove, oregano and peppermint essential oils used individually or combined on nutrient digestibility and greenhouse gas emissions in concentrate-and fiber-based diets. Agric. Conspec. Sci., 90: 71–81.
  56. Guo Y., Hassan F., Li M., Tang Z., Peng L., Peng K., Yang C. (2022). Effect of hydrogen-consuming compounds on in vitro ruminal fermentation, fatty acids profile, and microbial community in water buffalo. Curr. Microbiol., 79: 220.
  57. Habán M., Korczyk-Szabó J., Čerteková S., Ražná K. (2023). Lavandula species, their bioactive phytochemicals, and their biosynthetic regulation. Int. J. Mol. Sci., 24: 8831.
  58. Habtemariam S. (2019). Introduction to plant secondary metabolites – from biosynthesis to chemistry and antidiabetic action. In: Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, Habtemariam S. (ed.). Academic Press, pp. 109–132.
  59. Hassan F.U., Arshad M.A., Ebeid H.M., Rehman M.S. ur, Khan M.S., Shahid S., Yang C. (2020). Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Front. Vet. Sci., 7: 575801.
  60. Hazarika U., Gosztola B. (2020). Lyophilization and its effects on the essential oil content and composition of herbs and spices – a review. Acta Sci. Pol. Technol. Aliment., 19: 467–473.
  61. Homayouni-Rad A., Mortazavian A.M., Pourjafar H., Moghadam S.K. (2024). Extrusion and coextrusion: a technology in probiotic encapsulation with alternative materials. Curr. Pharm. Biotechnol., 25: 1986–2000.
  62. Hook S.E., Wright A.-D.G., McBride B.W. (2010). Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010: 945785.
  63. How Y., Lai K., Pui L., In L.L. (2022). Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J. Food Process. Eng., 45: 1–16.
  64. Ike K.A., Adelusi O.O., Alabi J.O., Olagunju L.K., Wuaku M., Anotaenwere C.C., Okedoyin D.O., Gray D., Dele P.A., Subedi K., Kholif A.E., Anele U.Y. (2024). Effects of different essential oil blends and fumaric acid on in vitro fermentation, greenhouse gases, nutrient degradability, and total and molar proportions of volatile fatty acid production in a total mixed ration for dairy cattle. Agriculture, 14: 876.
  65. Julaeha E., Pandiangan N.S., Eddy D.R., Permadi N., Harja A., Wahyudi T., Al-Anshori J. (2023). Ethyl cellulose-based microcapsules of Citrus aurantifolia (Christm.) Swingle essential oil with an optimized emulsifier for antibacterial cosmetotextiles. Polymer (Guildf), 283: 126265.
  66. Karekar S., Stefanini R., Ahring B. (2022). Homo-Acetogens: their metabolism and competitive relationship with hydrogenotrophic methanogens. Microorganisms, 10: 397.
  67. Khairunisa B.H., Heryakusuma C., Ike K., Mukhopadhyay B., Susanti D. (2023). Evolving understanding of rumen methanogen ecophysiology. Front. Microbiol., 14: 1296008.
  68. Kholif A.E. (2023). A review of effect of saponins on ruminal fermentation, health and performance of ruminants. Vet. Sci., 10: 450.
  69. Kholif A.E., Elghandour M.M.Y., Salem A.Z.M., Barbabosa A., Márquez O., Odongo N.E. (2017). The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. J. Agric. Sci., 155: 494–507.
  70. Kholif A.E., Gouda G.A., Fahmy M., Morsy T.A., Abdelsattar M.M., Vargas‐Bello‐Pérez E. (2024). Fennel seeds dietary inclusion as a sustainable approach to reduce methane production and improve nutrient utilization and ruminal fermentation. Anim. Sci. J., 95: 13910.
  71. Kholif A.E., Gouda G.A., Galyean M.L., Anele U.Y., Morsy T.A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst., 93: 1877–1886.
  72. Kholif A.E., Gouda G.A., Morsy T.A., Matloup O.H., Sallam S.M., Patra A.K. (2023). Associative effects between Chlorella vulgaris microalgae and Moringa oleifera leaf silage used at different levels decreased in vitro ruminal greenhouse gas production and altered ruminal fermentation. Environ. Sci. Pollut. Res., 30: 6001–6020.
  73. Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafadehan O.A., Morsy T.A. (2018). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.
  74. Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev., 20: 1087–1108.
  75. Kong I., Degraeve P., Pui L.P. (2022). Polysaccharide-based edible films incorporated with essential oil nanoemulsions: physico-chemical, mechanical properties and its application in food preservation – a review. Foods, 11: 555.
  76. Króliczewska B., Pecka-Kiełb E., Bujok J. (2023). Strategies used to reduce methane emissions from ruminants: controversies and issues. Agriculture, 13: 602.
  77. Li L., Li X., McClements D.J., Jin Z., Ji H., Qiu C. (2025). Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit. Rev. Food Sci. Nutr., In Press.
  78. Liang J., Zhang Y., Chi P., Liu H., Jing Z., Cao H., Du Y., Zhao Y., Qin X., Zhang W., Kong D. (2023). Essential oils: Chemical constituents, potential neuropharmacological effects and aromatherapy – A review. Pharmacol. Res. – Mod. Chin. Med., 6: 100210.
  79. Lin B., Lu Y., Salem A.Z.M., Wang J.H., Liang Q., Liu J.X. (2013). Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol., 184: 24–32.
  80. Lu W., Kelly A.L., Miao S. (2016). Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol., 47: 1–9.
  81. Lukova P., Katsarov P., Pilicheva B. (2023). Application of starch, cellulose, and their derivatives in the development of microparticle drug-delivery systems. Polymers (Basel), 15: 3615.
  82. Lyu Z., Shao N., Akinyemi T., Whitman W.B. (2018). Methanogenesis. Curr. Biol., 28: R727–R732.
  83. Mackie R.I., Kim H., Kim N.K., Cann I. (2024). Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production. Anim. Biosci., 37: 323–336.
  84. Mahato N., Sinha M., Sharma K., Koteswararao R., Cho M.H. (2019). Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods, 8: 523.
  85. Malerba M.E., Friess D.A., Peacock M., Grinham A., Taillardat P., Rosentreter J.A., Webb J., Iram N., Al-Haj A.N., Macreadie P.I. (2022). Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands. One Earth, 5: 1336–1341.
  86. Martins L., Fernandes J., Drouillard J., Leite L., Araujo R. (2018). 72 A microencapsulated blend of essential oils and dead yeast culture on the performance of nellore bulls finished in feedlot. J. Anim. Sci., 96: 397–398.
  87. Masyita A., Mustika Sari R., Dwi Astuti A., Yasir B., Rahma Rumata N., Emran T. Bin, Nainu F., Simal-Gandara J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X, 13: 100217.
  88. Matsunaga S.N., Mochizuki T., Ohno T., Endo Y., Kusumoto D., Tani A. (2011). Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements. Atmos. Pollut. Res., 2: 16–23.
  89. Matthews C., Crispie F., Lewis E., Reid M., O’Toole P.W., Cotter P.D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10: 115–132.
  90. McClements D.J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci., 253: 1–22.
  91. Mechmechani S., Khelissa S., Gharsallaoui A., Omari K. El, Hamze M., Chihib N.E. (2022). Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Appl. Microbiol. Biotechnol., 106: 2311–2335.
  92. Mihalca V., Kerezsi A.D., Weber A., Gruber‐traub C., Schmucker J., Vodnar D.C., Dulf F.V., Socaci S.A., Fărcaș A., Mureșan C.I., Suharoschi R., Pop O.L. (2021). Protein‐based films and coatings for food industry applications. Polymers (Basel), 13: 1–24.
  93. Mitsui T., Harasawa R. (2017). The effects of essential oil, povidone-iodine, and chlorhexidine mouthwash on salivary nitrate/nitrite and nitrate-reducing bacteria. J. Oral Sci., 59: 597–601.
  94. Mockute D., Bernotiene G., Nivinskiene O., Butkiene R. (2008). Variability of volatiles of wild hops (humulus lupulus l.) growing in eastern lithuania. J. Essent. Oil Res., 20: 96–101.
  95. Mohammed N.K., Tan C.P., Manap Y.A., Muhialdin B.J., Hussin A.S.M. (2020). Spray drying for the encapsulation of oils—a review. Molecules, 25: 3873.
  96. Morsy T.A., Gouda G.A., Kholif A.E. (2022). In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment. Environ. Sci. Pollut. Res., 29: 69743–69752.
  97. Morsy T.A., Kholif A.E., Matloup O.H., Elella A.A., Anele U.Y., Caton J.S. (2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85: 142–151.
  98. Mostafavi S., Asadi-Gharneh H.A., Miransari M. (2019). The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chem., 276: 700–706.
  99. Muhoza B., Xia S., Wang X., Zhang X., Li Y., Zhang S. (2022). Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Crit. Rev. Food Sci. Nutr., 62: 1363–1382.
  100. Muslykhah U., Suriyapha C., Phupaboon S., Pongsub S., Matra M., Dagaew G., Sommai S., Wanapat M. (2024). Potential use of Wolffia globosa powder supplementation on in vitro rumen fermentation characteristics, nutrient degradability, microbial population, and methane mitigation. Sci. Rep., 14: 28611.
  101. Nedwell D.B., Banat I.M. (1981). Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microb. Ecol., 7: 305–313.
  102. Negi A., Kesari K.K. (2022). Chitosan nanoparticle encapsulation of antibacterial essential oils. Micromachines (Basel), 13: 1265.
  103. Ozkan G., Franco P., Marco I. De, Xiao J., Capanoglu E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem., 272: 494–506.
  104. Phupaboon S., Matra M., Sommai S., Dagaew G., Suriyapha C., Prachumchai R., Wanapat M. (2024). Microencapsulation efficiency of fruit peel phytonutrient-based antimicrobial to mitigate rumen emission using in vitro fermentation technique. Ital. J. Anim. Sci., 23: 664–677.
  105. Pineda C., Moreno G., Cruz A. (2023). Essential oils as modifiers of rumen metabolism and reducers of methane gas production. Veterinarska Stanica, 55: 429–440.
  106. Prachumchai R., Suriyapha C., Dagaew G., Sommai S., Matra M., Phupaboon S., Phasuk Y., Wanapat M. (2024). Microencapsulation of lemongrass and mangosteen peel as phytogenic compounds to gas kinetics, fermentation, degradability, methane production, and microbial population using in vitro gas technique. PLoS One, 19: e0304282.
  107. Rahim M.A., Ayub H., Sehrish A., Ambreen S., Khan F.A., Itrat N., Nazir A., Shoukat A., Shoukat A., Ejaz A., Özogul F., Bartkiene E., Rocha J.M. (2023). Essential components from plant source oils: a review on extraction, detection, identification, and quantification. Molecules, 28: 6881.
  108. Rashidinejad A., Jafari S.M. (2020). Nanoencapsulation of bioactive food ingredients. In: Handbook of Food Nanotechnology. Elsevier, pp. 279–344.
  109. Rehman A., Jafari S.M., Aadil R.M., Assadpour E., Randhawa M.A., Mahmood S. (2020). Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci. Technol., 101: 106–121.
  110. Reis D.R., Ambrosi A., Luccio M. Di (2022). Encapsulated essential oils: A perspective in food preservation. Future Foods, 5: 100126.
  111. Russell J.B., Rychlik J.L. (2001). Factors that alter rumen microbial ecology. Science (1979), 292: 1119–1122.
  112. Şahan Z. (2023). Bacteriolytic activity of ruminal protozoa is affected by rate and type of common essential oils: Effect of thyme oil. S. Afr. J. Anim. Sci., 53: 589–597.
  113. Saifullah M., Shishir M.R.I., Ferdowsi R., Tanver Rahman M.R., Vuong Q. Van (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol., 86: 230–251.
  114. Salem A.Z.M., Kholif A.E., Elghandour M.M.Y., Buendía G., Mariezcurrena M.D., Hernandez S.R., Camacho L.M. (2014). Influence of oral administration of Salix babylonica extract on milk production and composition in dairy cows. Ital. J. Anim. Sci., 13: 10–14.
  115. Sánchez-Osorno D.M., López-Jaramillo M.C., Caicedo Paz A.V., Villa A.L., Peresin M.S., Martínez-Galán J.P. (2023). Recent advances in the microencapsulation of essential oils, lipids, and compound lipids through spray drying: a review. Pharmaceutics, 15: 1490.
  116. Sebaaly C., Greige-Gerges H., Stainmesse S., Fessi H., Charcosset C. (2016). Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci., 15: 1–10.
  117. Sell C. (2020). Chemistry of Essential Oils. In: Handbook of Essential Oils. Boca Raton, FL, USA, CRC Press, pp. 161–189.
  118. Sharma S., Mulrey L., Byrne M., Jaiswal A.K., Jaiswal S. (2022). Encapsulation of essential oils in nanocarriers for active food packaging. Foods, 11: 2337.
  119. Shinkai T., Takizawa S., Fujimori M., Mitsumori M. (2024). The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim. Biosci., 37: 360–369.
  120. Soltan Y.A., Natel A.S., Araujo R.C., Morsy A.S., Abdalla A.L. (2018). Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol., 237: 8–18.
  121. Sousa D.P. de, Damasceno R.O.S., Amorati R., Elshabrawy H.A., Castro R.D. de, Bezerra D.P., Nunes V.R. V., Gomes R.C., Lima T.C. (2023). Essential Oils: chemistry and pharmacological activities. Biomolecules, 13: 1144.
  122. Sousa V.I., Parente J.F., Marques J.F., Forte M.A., Tavares C.J. (2022). Microencapsulation of essential oils: a review. Polymers (Basel), 14: 1730.
  123. Taofik Adam IBRAHIM B. (2023). Effect of extraction solvents and encapsulation on the efficacy of certain medicinal plant extracts to inhibit enteric methane emission. PhD thesis, University of Pretoria.
  124. Timilsena Y.P., Akanbi T.O., Khalid N., Adhikari B., Barrow C.J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int. J. Biol. Macromol., 121: 1276–1286.
  125. Tolve R., Tchuenbou-Magaia F., Cairano M. Di, Caruso M.C., Scarpa T., Galgano F. (2021). Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Anim. Feed Sci. Technol., 279: 115036.
  126. Tondini S.M., Bayat A.R., Khelil-Arfa H., Blanchard A., Yáñez-Ruiz D.R. (2024). Effect of a blend of cinnamaldehyde, eugenol and capsicum oleoresin on methane emission and lactation performance of Nordic Red dairy cows fed grass silage-based diets. Livest. Sci., 284: 105494.
  127. Torequl Islam M., Quispe C., Herrera-Bravo J., Rahaman M.M., Hossain R., Sarkar C., Raihan M.A., Chowdhury M.M., Uddin S.J., Shilpi J.A., Marcelo De Castro E Sousa J., Melo-Cavalcante A.A.D.C., Mubarak M.S., Sharifi-Rad J., Calina D. (2022). Activities and molecular mechanisms of diterpenes, diterpenoids, and their derivatives in rheumatoid arthritis. In: Evidence-Based Complementary and Alternative Medicine, p. John Wiley & Sons, Ltd.
  128. Tseten T., Sanjorjo R.A., Kwon M., Kim S.W. (2022). Strategies to mitigate enteric methane emissions from ruminant animals. J. Microbiol. Biotechnol., 32: 269–277.
  129. Ungerfeld E.M. (2020). Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol., 11: 528227.
  130. Xiao Z., Xia J., Zhao Q., Niu Y., Zhao D. (2022). Maltodextrin as wall material for microcapsules: A review. Carbohydr. Polym., 298: 120113.
  131. Yammine J., Chihib N.-E., Gharsallaoui A., Ismail A., Karam L. (2024). Advances in essential oils encapsulation: development, characterization and release mechanisms. Polymer Bulletin, 81: 3837–3882.
  132. Zhang Y., Wang Q.C., Yu H., Zhu J., Lange K. de, Yin Y., Wang Q., Gong J. (2016). Evaluation of alginate-whey protein microcapsules for intestinal delivery of lipophilic compounds in pigs. J. Sci. Food Agric., 96: 2674–2681.
  133. Zhu Y., Li C., Cui H., Lin L. (2021). Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control, 123: 107856.
  134. Zubair M., Shahzad S., Hussain A., Pradhan R.A., Arshad M., Ullah A. (2022). Current trends in the utilization of essential oils for polysaccharide-and protein-derived food packaging materials. Polymers (Basel), 14: 1146.
DOI: https://doi.org/10.2478/aoas-2025-0054 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Jan 27, 2025
|
Accepted on: May 6, 2025
|
Published on: Jun 9, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Ahmed E. Kholif, Olurotimi A. Olafadehan, Adel M. Kholif, Navid Ghavipanje, Einar Vargas-Bello-Pérez, Uchenna Y. Anele, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT