Have a personal or library account? Click to login
Phytogenics, fermented ingredients, bee products, insect additives, and byproducts as promising dietary supplements for poultry Cover

Phytogenics, fermented ingredients, bee products, insect additives, and byproducts as promising dietary supplements for poultry

Open Access
|Jun 2025

References

  1. Ababor S., Tamiru M., Alkhtib A., Wamatu J., Kuyu C.G., Teka T.A., Terefe L.A., Burton E. (2023). The use of biologically converted agricultural byproducts in chicken nutrition. Sustainability, 15: 14562.
  2. Abd El-Aziz A., Abo Ghanima M., Mota-Rojas D., Sherasiya A., Ciani F., El-Sabrout K. (2023). Bee products for poultry and rabbits: Current challenges and perspectives. Animals, 13: 3517.
  3. Abd El-Aziz A., Elfadadny A., Abo Ghanima M., Cavallini D., Fusaro I., Giammarco M., Buonaiuto G., El-Sabrout K. (2024). Nutritional value of oregano-based products and its effect on rabbit performance and health. Animals, 14: 3021.
  4. Abd El-Ghany W. (2019). Nanotechnology and its considerations in poultry field: An Overview. J. Hellenic Vet. Med. Soc., 70: 1611.
  5. Abd El-Ghany W.A. (2024). Propolis (bee glue): a promising natural feed additive for poultry and rabbits – a review. Ann. Anim. Sci., 24: 1051–1064.
  6. Abdel-Raheem S.M., El-Hamid M.I.A., Khamis T., Baz H.A., Omar A.E., Gad W.M., El-Azzouny M.M., Habaka M.A.M., Mohamed R.I., Elkenawy M.E., Dawod R.E., Elalfy E.A., Ibrahim, D. (2024). Comprehensive efficacy of nano-formulated mixed probiotics on broiler chickens’ performance and Salmonella Typhimurium challenge. Poult. Sci., 103: 104334.
  7. Abdel-Wareth A.A.A., Lohakare J.D. (2020). Productive performance, egg quality, nutrients digestibility, and physiological response of bovans brown hens fed various dietary inclusion levels of peppermint oil. Anim. Feed Sci. Technol., 267: 114554.
  8. Adli D.N. (2021). Use of insects in poultry feed as replacement soya bean meal and fish meal in development countries: a systematic review. Livest. Res. Rural Develop., 33: 2021.
  9. Abdollahi M.R., Wiltafsky-Martin M., Ravindran V. (2021). Application of apparent metabolizable energy versus nitrogen-corrected apparent metabolizable energy in poultry feed formulations: A continuing conundrum. Animals, 11: 2174.
  10. Abou-Elkhair R., Selim S., Hussein E. (2018). Effect of supplementing layer hen diet with phytogenic feed additives on laying performance, egg quality, egg lipid peroxidation and blood biochemical constituents. Anim. Nutr., 4: 394–400.
  11. Abudabos A.M., Alyemni A.H., Dafalla Y.M., Khan R.U. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res., 46: 691–695.
  12. Ahmad I., Mashwani Z.-U.-R., Raja N.I., Kazmi A., Wahab A., Ali A., Younas Z., Yaqoob S., Rahimi M. (2022). Comprehensive approaches of nanoparticles for growth performance and health benefits in poultry: An Update on the Current Scenario. BioMed Res. Inter., 2022: 9539908.
  13. Ahmadi F., Kurdestany A.H. (2010). The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. J. Global Vet., 5: 366–370.
  14. Akbari M., Torki M., Kaviani K. (2016). Single and combined effects of peppermint and thyme essential oils on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition (6.8 ± 3°C). Inter. J. Biometeorol., 60: 447–454.
  15. Akosile O.A., Kehinde F.O., Oni A.I., Oke O.E. (2023). Potential implication of in ovo feeding of phytogenics in poultry production. Trans. Anim. Sci., 7: txad094.
  16. Al-Kahtani S.N., Alaqil A.A., Abbas A.O. (2022). Modulation of antioxidant defense, immune response, and growth performance by inclusion of propolis and bee pollen into broiler diets. Animals, 12: 1658.
  17. Alanazi A.M., Eid N., Dergaa I., Basiouni S., Shehata A.A., El-Seedi H.R. (2024). An overview on nanotechnology and its poultry applications: opportunities and challenges. In: A.A. Shehata, G. Tellez-Isaias, and W. Eisenreich, eds. Alternatives to Antibiotics against Pathogens in Poultry. Cham: Springer Nature Switzerland, 277–289.
  18. Alem W.T. (2024). Effect of herbal extracts in animal nutrition as feed additives. Heliyon, 10: e24973.
  19. Alghirani M.M., Chung E.L.T., Jesse F.F.A., Sazili A.Q., Loh T.C. (2021). Could Phytobiotics replace Antibiotics as Feed Additives to Stimulate Production Performance and Health Status in Poultry? An Overview. J. Adv. Vet. Res., 11: 254–265.
  20. Aljumaah M.R., Suliman, G.M., Abdullatif, A.A., Abudabos, A.M. (2020). Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci., 99: 5744–5751.
  21. Allegretti G., Talaminia E., Schmidt V., Bogorni C., Ortega E. (2018). Insect as feed: an emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Cleaner Prod., 171: 403–412.
  22. Al-Qazzaz M.F., Ismail D.B. (2016). Insect meal as a source of protein in animal diet. Anim Nutr. Feed Technnol., 16: 527–547.
  23. Al-Sultan S.I. (2003). The effect of Curcuma longa (Tumeric) on overall performance of broiler chickens. Inter. J. Poult. Sci., 2: 351–353.
  24. Ao X., Kim I.H. (2020). Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci., 99: 2078–2086.
  25. Aparna N., Karunakaran R. (2016). Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J. Sci. Technol., 9: 1–5.
  26. Arain M., Mei Z., Hassan F., Saeed M., Alagawany M., Shar A., Rajput, I. (2018). Lycopene: A natural antioxidant for prevention of heat-induced oxidative stress in poultry. World’s Poult. Sci. J., 74: 89–100.
  27. Araújo L.F., da Silva Araújo, C.S., Petroli, N.B., de Laurentiz, A.C., de Albuquerque, R., de Trindade Neto, M.A. (2011). Sunflower meal for broilers of 22 to 42 days of age. R. Bras. Zootec., 40: 2142–2146.
  28. Arpášová H., Pistová V., Hrnčar C., Fik M., Haščík P., Kačániová M., Gálik B., Bučko O. (2018). The impact of the humic acid and phytobiotics on performance and carcass parameters of broiler chickens. Acta Fytotechnica et Zootechnica, 21: 173–178.
  29. Ayalew H., Wang J., Wu S., Qiu K., Tekeste A., Xu C., Lamesgen D., Cao S., Qi G., Zhang H. (2023). Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult. Sci., 102: 103130.
  30. Bajagai Y.S., Alsemgeest J., Moore R.J., Van T.T., Stanley D. (2020). Phytogenic products, used as alternatives to antibiotic growth promoters, modify the intestinal microbiota derived from a range of production systems: an in vitro model. Appl. Microbiol. Biotechnol., 104: 10631–10640.
  31. Ballitoc D.A., Sun S. (2013). Ground yellow mealworms (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Sci. Repository Agric., e23050425.
  32. Bampidis V.A., Christodoulou V., Florou-Paneri P., Christaki E., Chatzopoulou P.S., Tsiligianni T., Spais A.B. (2005). Effect of dietary dried oregano leaves on growth performance, carcase characteristics and serum cholesterol of female early maturing turkeys. Br. Poult. Sci., 46: 595–601.
  33. Bava R., Castagna F., Musella V., Lupia C., Palma E., Britti D. (2023). Therapeutic use of bee venom and potential applications in veterinary medicine. Vet. Sci., 10: 119.
  34. Belhadj Slimen I., Yerou H., Ben Larbi M., M’Hamdi N., Najar T. (2023). Insects as an alternative protein source for poultry nutrition: a review. Front. Vet. Sci, 10: 1200031.
  35. Bello A., Zhai W., Gerard P.D., Peebles E.D. (2013). Effects of the commercial in ovo injection of 25-hydroxycholecalciferol on the hatchability and hatching chick quality of broilers. Poult. Sci., 92: 2551–2559.
  36. Benzertiha A., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Rawski M., Józefak D., Józefak A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci., 99: 196–206.
  37. Biasato I., Capucchio M.T., Biasibetti E., Dezzutto A., Tarantola M., Dabbou S., et al. (2019). Effects of partially defatted Tenebrio molitor meal on growth performance, gut health, and immune response of broiler chickens. Poult. Sci., 98: 260–269.
  38. Biasato I., Ferrocino I., Biasibetti E., Grego E., Dabbou S., Sereno A., Gai F., Gasco L., Schiavone A., Cocolin L., Capucchio M.T. (2018). Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet. Res., 14: 1–15.
  39. Bist R.B., Bist K., Poudel S., Subedi D., Yang X., Paneru B., Mani S., Wang D., Chai L. (2024). Sustainable poultry farming practices: a critical review of current strategies and future prospects. Poult. Sci., 103: 104295.
  40. Bölükbaşı, Ş.C., Ürüşan, H., Apaydin Yildirim, B. (2023). The effect of propolis addition to the laying-hen diet on performance, serum lipid profile and liver fat rate. Arch. Anim. Breed., 66: 225–232.
  41. Bondar A., Horodincu L., Solcan G., Solcan C. (2023). Use of Spirulina platensis and Curcuma longa as nutraceuticals in poultry. Agriculture, 13: 1553.
  42. Borrelli L., Coretti L., Dipineto L., Bovera F., Menna F., Chiariotti L., Nizza A., Lembo F., Fioretti A. (2017). Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep., 7: 1–11.
  43. Bovera F., Piccolo G., Gasco L., Marono S., Loponte R., Vassalotti G., Mastellone V., Lombardi P., Attia Y.A., Nizza A. (2015). Yellow mealworm larvae (Tenebrio molitor L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci., 56: 569–575.
  44. Brown K.L., Wilson M.P., Davis R.T. (2021). Nutritional evaluation of black soldier fly larvae meal as a protein source for broiler chickens. J. Anim. Sci., 99: 1–10.
  45. Brunetti L., Leuci R., Colonna M.A., Carrieri R., Celentano F.E., Bozzo G., Loiodice F., Selvaggi M., Tufarelli V., Piemontese L. (2022). Food industry byproducts as starting material for innovative, green feed formulation: a sustainable alternative for poultry feeding. Molecules, 27: 4735.
  46. Cairo P.L., Gois F.D., Sbardella M., Silveira H., de Oliveira R.M., Allaman I.B., Cantarelli V.D., Costa L.B. (2018). Effects of dietary supplementation of red pepper (Schinus terebinthifolius Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs. J. Sci. Food Agric., 98: 541–548.
  47. Campos I., Valente L.M., Matos E., Marques P., Freire F. (2020). Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J. Cleaner Prod., 252: 119845.
  48. Chen Y., Chen H., Li W., Miao J., Chen N., Shao X., Cao Y. (2018). Polyphenols in Eucalyptus leaves improved the egg and meat qualities and protected against ethanol-induced oxidative damage in laying hens. J. Anim. Physiol. Anim. Nutr., 102: 214–223.
  49. Choi Y.C., Park K.H., Nam S.H., Jang B.G., Kim J., Kim D., Yu D.J. (2013). The effect on growth performance of chicken meat in broiler chicks by dietary supplementation of black soldier fly larvae, Hermetia illucens (Diptera: Stratmyidae). J. Sericult. Entomol. Sci., 51: 30–35.
  50. Cimrin T. (2019). Thyme (Thymbra spicata L.), rosemary (Rosmarinus officinalis L.) and vitamin E supplementation of laying hens. South Afr. J. Anim. Sci., 49: 914–921.
  51. Colombino E., Biasato I., Ferrocino I., Bellezza Oddon S., Caimi C., Gariglio M., Dabbou S., Caramori M., Battisti E., Zanet S., Ferroglio E. (2021). Effect of insect live larvae as environmental enrichment on poultry gut health: gut mucin composition, microbiota and local immune response evaluation. Animals, 11: 2819.
  52. Colombino E., Ferrocino I., Biasato I., Cocolin L.S., Prieto-Botella D., Zdu´nczyk Z., Jankowski J., Milala J., Kosmala M., Fotschki B., et al. (2020). Dried fruit pomace inclusion in poultry diet: Growth performance, intestinal morphology and physiology. J. Anim. Sci. Biotechnol., 11: 63.
  53. Das R., Mishra P., Jha R. (2021). In ovo feeding as a tool for improving performance and gut health of poultry: a review. Front. Vet. Sci., 8: 754246.
  54. Da Rosa G., Dazuk V., Alba D.F., Galli G.M., Molosse V., Boiago M.M., Souza C.F., Abbad L.B., Baldissera M.D., Stefani L.M., Da Silva A.S. (2020). Curcumin addition in diet of laying hens under cold stress has antioxidant and antimicrobial effects and improves bird health and egg quality. J. Therm. Biol., 91: 102618.
  55. De Oliveira J.E., Uni Z., Ferket P.R. (2008). Important metabolic pathways in poultry embryos prior to hatch. World’s Poult. Sci. J., 64: 488–499.
  56. Demir Z., Kaya H. (2020). Effect of bee pollen supplemented diet on performance, egg quality traits and some serum parameters of laying hens. Pak. J. Zool., 52: 425–824.
  57. Detilleux J., Moula N., Dawans E., Taminiau B., Daube G., Leroy P. (2022). A probabilistic structural equation model to evaluate links between gut microbiota and body weights of chicken fed or not fed insect larvae. Biology, 11: 357.
  58. Dhama K., Latheef S.K., Mani S., Samad H.A., Karthik K., Tiwari R., Khan R.U., Alagawany M., Farag M.R., Alam G.M., Laudadio V., Tufarelli V. (2015). Multiple beneficial applications and modes of action of herbs in poultry health and production-A Review. Inter. J. Pharmacol., 11: 152–176.
  59. Diaz-Vargas M., Murakami A.E., Pintro P.T.M., Ospina-Rojas I.C., de Souza C.H.P., Eyng C. (2018). Dehydrated Citrus pulp in broiler diets. Can. J. Anim. Sci., 99: 33–40.
  60. Dimidi E., Cox S.R., Rossi M., Whelan K. (2019). Fermented Foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11: 1806.
  61. Ding X., Wu X., Zhang K., Bai S., Wang J., Peng H., Xuan Y., Su Z., Zeng Q. (2020). Dietary supplement of essential oil from oregano affects growth performance, nutrient utilization, intestinal morphology and antioxidant ability in Pekin ducks. J. Anim. Physiol. Anim. Nutr., 104: 1067–1074.
  62. Ding J., Liu J., Chen J., Cheng X., Cao H., Guo X., Hu G., Zhuang Y. (2024). Sodium butyrate alleviates free fatty acid-induced steatosis in primary chicken hepatocytes via the AMPK/PPARα pathway. Poult. Sci., 103: 103482.
  63. Durrani F.R., Ismail M., Sultan A., Suhail S.M., Chand N., Durrani Z. (2006). Effect of different levels of feed added turmeric (Curcuma longa) on the performance of broiler chicks. J. Agric. Biol. Sci., 1: 9–11.
  64. Ebrahimi A., Santini A., Alise M., Pourhossein Z., Miraalami N., Seidavi A. (2015). Effect of dried Citrus sinensis peel on gastrointestinal microbiota and immune system traits of broiler chickens. Italian J. Anim. Sci., 14: 4194.
  65. Ebrahimzadeh S.K., Navidshad B., Farhoomand P., Aghjehgheshlagh F.M. (2018). Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler Chickens. S. Afr. J. Anim. Sci., 48: 324–336.
  66. Eilenberg J., Vlak JM, Nielsen-LeRoux C., Cappellozza S., Jensen A.B. (2015). Diseases in insects produced for food and feed. J. Insects Food Feed, 1: 87–102.
  67. Elahi U., Wang J., Ma Y.-b., Wu S.-g., Wu J., Qi G.-h., Zhang H.-j. (2020). Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals, 10: 224.
  68. El-Banna B., Abouzeid A., El-Damrawy S.Z., El-Rayes T. (2023). Effect of bee venom on production performance and immune response of broilers. Egypt. J. Nutr. Feeds, 26: 91–100.
  69. Elghafar R.A., Abaza M., Ellakany H.F., Abd EL-Hady A.M., El-Sabrout K. (2024). The effect of fermented wheat germ extract on broiler chicks’ growth performance, immunological status, and carcass characteristics. Ann. Anim. Sci., 24: 1323–1331.
  70. Elieh Ali Komi D., Sharma L., Dela Cruz C.S. (2018). Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol., 54: 213–223.
  71. El-Ashram S., Abdelhafez G.A. (2020). Effects of phytogenic supplementation on productive performance of broiler chickens. J. Appl. Poult. Res., 29: 852–862.
  72. El-Sabrout K., Khalifah A., Mishra B. (2023a) Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet. World, 16: 369–379.
  73. El-Sabrout K., Dantas M.R., Souza-Júnior J.B. (2023b). Herbal and bee products as nutraceuticals for improving poultry health and production. Worlds Poult. Sci. J., 79: 223–242.
  74. El-Sabrout K., Landolfi, S., Ciani, F. (2024). Feed additives and enrichment materials to reduce chicken stress, maximize productivity, and improve welfare. Vet. World, 17: 2044–2052.
  75. Evci Ş. (2024). Uses of nanotechnological feed additives and nano feeds in poultry feeding. J. Poult. Res., 21: 27–33.
  76. Fares W.A., Ahmed, M.R.M., Rizk, R. E., Shahein, E.H.A., Boutrous, N.G., El-Sabrout, K. (2023). Influence of non-ventilating intervals during early incubation stage on egg hatching process. Vet. World, 16: 1534–1540.
  77. Fathi M.M., Al-Homidan I., Ebeid T.A., Abou-Emera O.K., Mostafa M.M. (2020). Dietary supplementation of Eucalyptus leaves enhances eggshell quality and immune response in two varieties of Japanese quails under tropical condition. Poult. Sci., 99: 879–885.
  78. Fathima S., Al Hakeem W.G., Selvaraj R.K., Shanmugasundaram R. (2024). Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front. Physiol., 14: 1326809.
  79. Fathima S., Shanmugasundaram R., Adams D., Selvaraj R.K. (2022). Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods, 11: 1401.
  80. Fazli N., Hassanabadi A., Mottaghitalab M., Hajati H. (2015). Manipulation of broiler chickens sex differentiation by in ovo injection of aromatase inhibitors, and garlic and tomato extracts. Poult. Sci., 94: 2778–2783.
  81. Ferdous M.F., Arefin M.S., Rahman M.M., Ripon M.M.R., Rashid M.H., Sultana M.R., Hossain M.T., Ahammad M.U., Rafiq K. (2019). Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J. Adv. Vet. Anim. Res., 6: 409–415.
  82. Fotou E., Moulasioti V., Kyriakou D., Boti M., Moussis V., Papadami M., Tellis C., Patsias A., Sarrigeorgiou I., Papadopoulos G.A., Lymberi P., Tsiouris V., Tsikaris V., Demokritos T. (2024). Effect of dietary supplementation with oregano oil premix on the antioxidant status, performance, and meat quality in slow-growth broiler chickens. Ital. J. Anim. Sci., 23: 1741–1751.
  83. Fu Z., Ao N., Liang X., Chen J., Wang Y., Wang Q., Fu J., Liu C., Lu L. (2023). Effects of fermented feed on growth performance, serum biochemical indexes, antioxidant capacity, and intestinal health of lion-head goslings. Front. Vet. Sci., 10: 1284523.
  84. Gangadoo S., Stanley D., Hughes R.J., Moore R.J., Chapman J. (2016). Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol., 58: 115–126.
  85. Gao T., Zhao M.M., Li Y.J., Zhang L., Li J.L., Yu L.L., Gao F., Zhou G.H. (2018). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J. Anim. Physiol. Anim. Nutr., 102: e166–e175.
  86. Gao T., Zhao M.M., Zhang L., Li J.L., Yu L.L., Lv P.A., Gao F., Zhou G.H. (2017). Effects of in ovo feeding of L-arginine on the development of lymphoid organs and small intestinal immune barrier function in posthatch broilers. Anim. Feed Sci. Technol., 225: 8–19.
  87. Garcia E.F., Rodriguez G.H., Martinez I.J. (2019). Impact of fermented soybean meal on nutrient digestibility and immune response in laying hens. Anim. Feed Sci. Technol., 250: 112–120.
  88. Gasco L., Biasato I., Dabbou S., Schiavone A., Capucchio M.T., Rotolo L. (2018). Tenebrio molitor meal as a valuable protein source for broiler chickens: growth performance, nutrient digestibility and gut health. Animals, 8: 11.
  89. Gasco L., Finke M., van Huis A. (2018). Can diets containing insects promote animal health? J. Insects Food Feed, 4: 1–4.
  90. Gatoo M.A., Naseem S., Arfat M.Y., Mahmood Dar, A., Qasim K., Zubair S. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Inter., 2014: 498420.
  91. Georganas A., Giamouri E., Pappas A.C., Zoidis E., Goliomytis M., Simitzis P. (2023). Utilization of agro-industrial by-products for sustainable poultry production. sustainability, 15: 3679.
  92. Geyra A., Uni Z., Sklan D. (2001). The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. British J. Nutr., 86: 53–61.
  93. Ghaemi H., Nobakht A., Razzaghzadeh S. (2014). The Effect of apple pulp and multi enzyme on performance and blood parameters in native laying hens. J. Farm Anim. Physiol. Nutr., 9: 10–21.
  94. Ghanaatparast-Rashti M., Mottaghitalab M., Ahmadi H. (2018). In ovo feeding of nutrients and its impact on post-hatching water and feed deprivation up to 48 hr, energy status and jejunal morphology of chicks using response surface models. J. Anim. Physiol. Anim. Nutr., 102: e806–e817.
  95. Ghasemi R., Zarei, M., Torki, M. (2010). Adding medicinal herbs including garlic (Allium sativum) and thyme (Thymus vulgaris) to diet of laying hens and evaluating productive performance and egg quality characteristics. American J. Anim. Vet. Sci., 5: 151–154.
  96. Givisiez P.E.N., Moreira Filho, A.L.B., Santos, M.R.B., Oliveira, H.B., Ferket, P.R., Oliveira, C.J.B., Malheiros, R.D. (2020). Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poult. Sci., 99: 6774–6782.
  97. Gopi M., Pearlin B., Kumar R.D., Shanmathy M., Prabakar G. (2017). Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int. J. Pharmacol., 13: 724–731.
  98. Govinthasamy P., Marappan G., Kumarakurubaran K., Subramaniyan S., Arumugam K., Selvaraj P. (2016). Phytobiotics: Could the greens inflate the poultry production. Asian J. Anim. Vet. Adv., 11: 383–392.
  99. Gowthamraj G., Raasmika M., Narayanasamy S. (2021). Efficacy of fermentation parameters on protein quality and microstructural properties of processed finger millet flour. J. food Sci. Technol., 58: 3223–3234.
  100. Greene E.S., Emami N.K., Dridi S. (2021). Research Note: Phytobiotics modulate the expression profile of circulating inflammasome and cyto(chemo)kine in whole blood of broilers exposed to cyclic heat stress. Poult. Sci., 100: 100801.
  101. Guo L., Hua J., Luan Z., Xue P., Zhou S., Wang X., Qin N. (2019). Effects of the stems and leaves of Astragalus membranaceus on growth performance, immunological parameters, antioxidant status, and intestinal bacteria of quail. Anim. Sci. J., 90: 747–756.
  102. Guo Y., Xu Y., Wang D., Yang S., Song Z., Li R., He X. (2024). Dietary silymarin improves performance by altering hepatic lipid metabolism and cecal microbiota function and its metabolites in late laying hens. J. Anim. Sci. Biotechnol., 15: 100.
  103. Hajati H., Hassanabadi A., Golian A., Nassiri Moghaddam H., Nassiri M. (2014). The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac weight, performance and ileal microflora of broiler chickens. Res. Opin. Anim. Vet. Sci., 4: 633–638.
  104. Han S., Xu G., Zhang K., Ahmad S., Wang L., Chen F., Liu J., Gu X., Li J., Zhang J. (2024). Fermented Astragalus powder, a new potential feed additive for broilers to improve the growth performance and health. Animals, 14: 1628.
  105. Han S.M., Lee K.G., Yeo J.H., Oh B.Y., Kim B.S., Lee W., Baek H.J., Kim S.T., Hwang S.J., Pak S.C. (2010). Effects of honeybee venom supplementation in drinking water on growth performance of broiler chickens. Poult. Sci., 89: 2396–2400.
  106. Hashemipour H., Kermanshahi H., Golian A., Khaksar V. (2014). Effects of carboxy methyl cellulose and thymol + carvacrol on performance, digesta viscosity and some blood metabolites of broilers. J. Anim. Physiol. Anim. Nutr., 98: 672–679.
  107. Hassan R.I.M., Mosaad G., El-wahab H. (2018). Effect of Feeding Propolis on Growth Performance of Broilers. J. Adv. Vet. Res., 8: 66–72.
  108. Hassan S., Hassan F.-U., Rehman M.S.-U. (2020). Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biol. Trace Elem. Res., 195: 591–612.
  109. Herrero-Encinas J., Blanch M., Pastor J.J., Mereu A., Ipharraguerre I.R., Menoyo D. (2020). Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poult. Sci., 99: 2–10.
  110. Herve T., Raphaël K.J., Ferdinand N., Victor Herman N., Willy Marvel N.M., Cyril D’Alex T., Laurine Vitrice F.T. (2019). Effects of ginger (Zingiber officinale, roscoe) essential oil on growth and laying performances, serum metabolites, and egg yolk antioxidant and cholesterol status in laying Japanese quail. J. Vet. Med., 2019: 7857504.
  111. Hosseini-Vashan S.J., Golian A., Yaghobfar A. (2016). Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. Inter. J. Biometeorol., 60: 1183–1192.
  112. Hosseini-Vashan S.J., Raei-Moghadam M.S. (2019). Antioxidant and immune system status, plasma lipid, abdominal fat, and growth performance of broilers exposed to heat stress and fed diets supplemented with pomegranate pulp (Punica granatum L.). J. Appl. Anim. Res., 47: 521–531.
  113. Hu C.H., Li, Y.L., Xiong, L., Zhang, H.M., Song, J., Xia M.S. (2012). Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol., 177: 204–210.
  114. Iannas B.S., Ricci G., Biasato I., Capucchio M.T., Schiavone A., Gasco L. (2021). Effects of Tenebrio molitor meal inclusion in broiler chicken diets on growth performance, gut microbiota and intestinal health. Animals, 11: 220.
  115. Ido A., Iwai T., Ito K., Ohta T., Mizushige T., Kishida T., Miura C., Miura T. (2015). Dietary effects of housefy (Musca domestica) (Diptera: Muscidae) pupae on the growth performance and the resistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Appl. Entomol. Zool., 50: 213–221.
  116. Iji P.A., Saki A., Tivey D.R. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci., 42: 505–513.
  117. Islam M.M., Yang C.J. (2017). Efficacy of mealworm and supper mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult. Sci., 96: 27–34.
  118. Jahanian E., Jahanian R., Rahmani H.-R., Alikhani M. (2017). Dietary supplementation of Echinacea purpurea powder improved performance, serum lipid profile, and yolk oxidative stability in laying hens. J. Appl. Anim. Res., 45: 45–51.
  119. Jalal H., Doğan S.C., Giammarco M., Cavallini D., Lanzoni L., Pezzi P., Akram M.Z., Fusaro I. (2024). Evaluation of dietary supplementation of garlic powder (Allium sativum) on the growth performance, carcass traits and meat quality of Japanese quails (Coturnix coturnix japonica). Poult. Sci., 103: 104231.
  120. Jha R., Singh A.K., Yadav S., Berrocoso J.F.D., Mishra B. (2019). Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Front. Vet. Sci., 6: 82.
  121. Jiménez-Moreno E., Frikha M., de Coca-Sinova A., Lázaro R.P., Mateos G.G. (2013). Oat hulls and sugar beet pulp in diets for broilers. 2. Effects on the development of the gastrointestinal tract and on the structure of the jejunal mucosa. Anim. Feed Sci. Technol., 182: 44–52.
  122. Józefiak A., Engberg R.M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci., 26: 87–99.
  123. Kadam M.M., Barekatain M.R., Bhanja S.K., Iji P.A. (2013). Prospects of in ovo feeding and nutrient supplementation for poultry: The science and commercial applications – A review. J. Sci. Food Agric., 93: 3654–3661.
  124. Kara K., Kocaoglu Güçlü B., Baytok E., Sentürk M. (2016). Effects of Grape Pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res., 44: 303–310.
  125. Karlsen Ø., Amlund H., Berg A., Olsen R.E. (2017). The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquac. Res., 48: 123–133.
  126. Kermanshahi H., Golian A., Khodambashi Emami N., Daneshmand A., Ghofrani Tabari D., Ibrahim S.A. (2017). Effects of in ovo injection of threonine on hatchability, intestinal morphology, and somatic attributes in Japanese quail (Coturnix japonica). J. Appl. Anim. Res., 45: 437–441.
  127. Khalifah A., Abdalla S., Rageb M., Maruccio L., Ciani F., El-Sabrout K. (2023). Could insect products provide a safe and sustainable feed alternative for the poultry industry? A comprehensive review. Animals, 13: 1534.
  128. Khalifa S.A.M., Elashal M.H., Yosri N., Du M., Musharraf S.G., Nahar L., Sarker S.D., Guo Z., Cao W., Zou X., Abd El-Wahed A.A., Xiao J., Omar H.A., Hegazy M.F., El-Seedi H.R. (2021). Bee pollen: Current status and therapeutic potential. Nutrients, 13: 1876.
  129. Khan A., Sultan A., Islam Z., Uzair M.S., Alhidary I.A., Khan R.U., Naz S., Momand N.K., Tiwari R. (2024). Optimising growth performance, nutrients digestibility, immunity and gut health in broilers through ginger-derived phyto-protease enzyme (zingibain) supplementation. Ital. J. Anim. Sci., 23: 1695–1703.
  130. Khan I., Zaneb H., Masood S., Yousaf M.S., Rehman H.F., Rehman H. (2017). Effect of Moringa oleifera leaf powder supplementation on growth performance and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr., 101: 114–121.
  131. Khempaka S., Chitsatchapong C., Molee W. (2011) Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J. Appl. Poult. Res., 20: 1–11.
  132. Kikusato M. (2021). Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Anim. Biosci., 34: 345–353.
  133. Kim B., Bang H.T., Jeong J.Y., Kim M., Kim K.H., Chun J.L., Ji S.Y. (2021). Effects of dietary supplementation of black soldier fly (Hermetia illucens) larvae oil on broiler health. J. Poult. Sci., 58: 222–229.
  134. Kim D.K., Lillehoj, H.S., Lee, S.H., Jang, S.I., Lillehoj, E.P., Bravo, D. (2013). Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult. Sci., 92: 2635–2643.
  135. Kirkpinar F., Ünlü H.B., Serdaroğlu M., Turp G.Y. (2014). Effects of dietary oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. Br. Poult. Sci., 55: 157–166.
  136. Komi E.A.D., Sharma L., Dela Cruz C.S. (2018). Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy. Immunol., 54: 213–223.
  137. Korver D.R. (2023). Review: Current challenges in poultry nutrition, health, and welfare. Animal, 17: 100755.
  138. Kosti D., Dahiya D.S., Dalal R., Tewatia B.S., Vijayalakshmy K. (2020). Role of turmeric supplementation on production, physical and biochemical parameters in laying hens. World’s Poult. Sci. J., 76: 625–637.
  139. Kothari D., Oh J.-S., Kim J.-H., Lee W.-D., Kim S.-K. (2021). Effect of dietary supplementation of fermented pine needle extract on productive performance, egg quality, and serum lipid parameters in laying hens. Animals, 11: 1475.
  140. Krauze, M. (2021). Phytobiotics, a natural growth promoter for poultry. IntechOpen. doi: 10.5772/intechopen.99030
  141. Krauze M., Cendrowska-Pinkosz M., Matuseviĉius P., Stępniowska A., Jurczak P., Ognik K. (2021). The effect of administration of a phytobiotic containing cinnamon oil and citric acid on the metabolism, immunity, and growth performance of broiler chickens. Animals, 11: 399.
  142. Kritas S.K., Giannenas I., Petrotos K., Pappas I., Arsenakis I. (2021). Effects of dietary supplementation with Tenebrio molitor larvae meal on growth performance, carcass characteristics, and meat quality of broiler chickens. Animals, 11: 3236.
  143. Kröncke N., Grebenteuch S., Keil C., Demtröder S., Kroh L., Thünemann A.F., Benning R., Haase H. (2019). Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects, 10: 84.
  144. Lähteenmäki-Uutela A., Marimuthu S.B, Meijer N. (2021). Regulations on insects as food and feed: a global comparison. J. Insects Food Feed, 7: 849–856.
  145. Laudadio V., Nasiri-Dehbaneh M., Bilal R.M., Qotbi A., Javandel F., Ebrahimi A., Seidavi A., Slozhenkina M., Gorlov I., Dunne P.G., Tufarelli V. (2022). Effects of different levels of dietary black cumin (Nigella sativa L.) and fenugreek (Trigonella foenumgraecum L.) and their combination on productive traits, selected blood constituents, microbiota and immunity of broilers. Anim. Biotechnol., 33: 941–954.
  146. Lee C.G., Da Silva C.A., Lee J.Y., Hartl D., Elias J.A. (2008). Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol., 20: 684–689.
  147. Lee S.H., Park J.K., Kim D.W. (2022). Effects of propolis supplementation on antioxidant status and immune function in broiler chickens. J. World’s Poult. Res., 12: 200–210.
  148. Leinonen I., Kyriazakis I. (2016). How can we improve the environmental sustainability of poultry production? Proceedings of the Nutrition Society, 75: 265–273.
  149. Lewko L., Gornowicz E., Kryza A., Adamski M., (2024). Development of selected performance, dressing and meat quality traits of Pekin ducks in relation to genotype and phytogenic feed additives. Anim. Sci. Pap. Rep., 42: 297–310.
  150. Li C., Zhang C., Chen X., Cui H., Lin L. (2022). The interference mechanism of basil essential oil on the cell membrane barrier and respiratory metabolism of Listeria monocytogenes. Front. Microbiol., 13: 855905.
  151. Li J., Tao L., Zhang R., Yang G. (2022). Effects of fermented feed on growth performance, nutrient metabolism and cecal microflora of broilers. Anim. Biosci., 35: 596–604.
  152. Li S., Zhi L., Liu Y., Shen J., Liu L., Yao J., Yang X. (2016). Effect of in ovo feeding of folic acid on the folate metabolism, immune function and epigenetic modification of immune effector molecules of broiler. British J. Nutr., 115: 411–421.
  153. Lieberman S., Enig M.G., Preuss H.G. (2006). A review of monolaurin and lauric acid: Natural virucidal and bactericidal agents. Altern. Complement Ther., 12: 310–314.
  154. Lillehoj H.S., Liu Y., Calsamiglia S., Fernández-Miyakawa M.E., Chi F., Cravens R.L., Oh S., Gay C.G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res., 49: 76.
  155. Lisboa H.M., Nascimento A., Arruda A., Sarinho A., Lima J., Batista L., Dantas M.F., Andrade R. (2024). Unlocking the potential of insect-based proteins: Sustainable solutions for global food security and nutrition. Foods, 13: 1846.
  156. Liu C., Yang S., Wang K., Bao X., Liu Y., Zhou S., Liu H., Qiu Y., Wang T., Yu H. (2019). Alkaloids from traditional Chinese medicine against hepatocellular carcinoma. Biomed. Pharmacother., 120: 109543.
  157. Lokaewmane K. (2019). Effect of Chili leaf powder on laying hen performance, egg quality and egg yolk cholesterol levels. Inter. J. Poult. Sci., 18: 168–173.
  158. Loponte R., Cardinali R., Cullere M., Tulli F., Dalle Zotte A. (2021). Partial substitution of soybean meal with Hermetia illucens larva meal in growing broiler chickens: Effects on growth performance, gut microbiota, and carcass traits. Poult. Sci., 100: 101452.
  159. Lv J., Guo L., Chen B., Hao K., Ma H., Liu Y., Min Y. (2022). Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens. Poult. Sci., 101: 101570.
  160. Mahmoud U.T., Cheng, H., Applegate, T.J. (2016). Functions of propolis as a natural feed additive in poultry. World’s Poult. Sci. J., 72: 37–48.
  161. Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.
  162. Mancini S., Fratini F., Tuccinardi T., Degl’Innocenti C., Paci G. (2020). Tenebrio molitor reared on different substrates: is it gluten free? Food Control, 110: 107014.
  163. Marchal L., Bello A., Archer G., Sobotik E.B., Dersjant-Li Y. (2024). Total replacement of soybean meal with alternative plant-based ingredients and a combination of feed additives in broiler diets from 1 day of age during the whole growing period. Poult. Sci., 103: 103854.
  164. Marono S., Loponte R., Lombardi P., Vassalotti G., Pero M.E., Russo F., Gasco L., Parisi G., Piccolo G., Nizza S., Di Meo C., Attia Y.A., Bovera F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci., 96: 1783–1790.
  165. Marume U., Mokagane J.M., Shole C.O., Hugo A. (2020). Citrullus lanatus essential oils inclusion in diets elicit nutraceutical effects on egg production, egg quality, and physiological characteristics in layer hens. Poult. Sci., 99: 3038–3046.
  166. Masa’deh M.K., Purdum S.E., Hanford K.J. (2011). Dried distillers grains with solubles in laying hen diets phosphorus. Poult. Sci., 90: 1960–1966.
  167. Mbhele F.G., Mnisi C.M., Mlambo V. (2019). A nutritional evaluation of insect meal as a Sustainable protein source for Jumbo quails: physiological and meat quality responses. Sustainability, 11: 6592.
  168. Mehri M., Sabaghi V., Bagherzadeh-Kasmani F. (2015). Mentha piperita (peppermint) in growing Japanese quails diet: Performance, carcass attributes, morphology and microbial populations of intestine. Anim. Feed Sci. Technol., 207: 104–111.
  169. Menconi A., Pumford N.R., Morgan M.J., Bielke L.R., Kallapura G., Latorre J.D., Wolfenden A.D., Hernandez-Velasco X., Hargis B.M., Tellez G. (2014). Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathog. Dis., 11: 165–169.
  170. Migliorini M.J., Boiago M.M., Stefani L.M., Zampar A., Roza L.F., Barreta M., Arno A., Robazza W.S., Giuriatti J., Galvão A.C., Boscatto C., Paiano D., Da Silva A.S., de C. Tavernari F. (2019). Oregano essential oil in the diet of laying hens in winter reduces lipid peroxidation in yolks and increases shelf life in eggs. J. Therm. Biol., 85: 102409.
  171. Min Y., Suminda, G.G.D., Heo, Y., Kim, M., Ghosh, M., Son, Y.-O. (2023). Metal-Based nanoparticles and their relevant consequences on cytotoxicity cascade and induced oxidative stress. Antioxidants, 12: 703.
  172. Mohamed A., Khalil M., Soliman F., El-Sabrout K. (2025). The Effect of drinking ionized water on the productive performance, physiological status, and carcass characteristics of broiler chicks. Animals, 15: 229.
  173. Mohammadi Gheisar M.M., Kim I.H. (2017). Phytobiotics in poultry and swine nutrition – a review. Ital. J. Anim. Sci., 17: 92–99.
  174. Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br. Poult. Sci., 56: 486–493.
  175. Mohan P., Mala R. (2019). A review on the effect of ZnO nanomaterial as supplement in poultry farming. AIP Conference Proceedings, 2105: 020030.
  176. Mohiti-Asli M., Ghanaatparast-Rashti M. (2017). Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J. Appl. Anim. Res., 45: 603–608.
  177. More S., Bampidis V., Benford D., Bragard C., Halldorsson T., Hernández-Jerez A., Bennekou S.H., Koutsoumanis K., Lambré C., Machera K., Naegeli H., Nielsen S., Schlatter J., Schrenk D., et al. (2021). Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J., 19: e06769.
  178. Muzzolon A., Bicudo Á.J., Oldoni T.L., Sado R.Y. (2021). Dietary brown propolis extract modulated nonspecific immune system and intestinal morphology of Pacu Piaractus mesopotamicus. Braz. Arch. Biol. Technol., 64: e21200787.
  179. N’nanle O., Tété-Bénissan A., Tona K., Teteh A., Voemesse K., Decuypere E., Gbeassor M. (2017). Effect of in ovo inoculation of Moringa oleifera leaves extract on hatchability and chicken growth performance. Europ. Poult. Sci. (EPS), 81.
  180. Nampijja Z., Kiggundu M., Kigozi A., Lugya A., Magala H., Ssepuuya G., Nakimbugwe D., Walusimbi S.S., Mugerwa S. (2023). Optimal substitution of black soldier fly larvae for fish in broiler chicken diets. Sci. African, 20: e01636.
  181. Nawaz A.H., Setthaya P., Feng, C. (2024). Exploring evolutionary adaptations and genomic advancements to improve heat tolerance in chickens. Animals, 14: 2215.
  182. Nemauluma M., Manyelo T.G., Ng’ambi J.W., Kolobe S.D., Malematja E. (2023). Effects of bee pollen inclusion on performance and carcass characteristics of broiler chickens. Poult. Sci., 102: 102628.
  183. Ngueda D.O.R., N‘nanle O., Voemesse K., Onagbesan O., Decuypere E., Tona K. (2021). Effects of in ovo injection of Manihot esculenta extract on hatchability and post-hatch performance of Sasso broiler chickens. Europ. Poult. Sci. (EPS), 85.
  184. Obianwuna, U.E., Chang, X., Oleforuh-Okoleh, V.U., Onu, P.N., Zhang, H., Qiu, K., Wu, S. (2024). Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J. Anim. Sci. Biotechnol., 15: 169.
  185. Ogbuewu I.P., Mokolopi, B.G., Mbajiorgu, C.A. (2022). Meta-analysis of growth performance indices of broiler chickens in response to turmeric (Curcuma longa L.) supplementation. Anim. Feed Sci. Technol., 283: 115155.
  186. Oke O.E., Sorungbe F.O., Abioja M.O., Oyetunji O., Onabajo A.O. (2016). Effect of different levels of honey on physiological, growth and carcass traits of broiler chickens during dry season. Acta Agriculturae Slovenica, 108: 45–53.
  187. Oršolić N., Jazvinšćak Jembrek M. (2022). Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer. Inter. J. Mol. Sci., 23: 10479.
  188. Pandey S., Kim E.S., Cho J.H., Song M., Doo H., Kim S., Keum G.B., Kwak J., Ryu S., Choi Y., Kang J., Choe J., Kim H.B. (2023). Cutting-edge knowledge on the roles of phytobiotics and their proposed modes of action in swine. Front. Vet. Sci., 10: 1265689.
  189. Paraskeuas V.V., Pastor A., Steiner, T.C., Mountzouris, K.C. (2024). Effects of a dietary isoquinoline alkaloids blend on gut antioxidant capacity and gut barrier of young broilers. Poult. Sci., 103: 103654.
  190. Park J.H., Kim, I.H. (2020). Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult. Sci., 99: 463–470.
  191. Pawłowska J. (2024). Bee pollen as natural additive in poultry nutrition: a review. World’s Poult. Sci. J., 80: 1159–1169.
  192. Pecjak M., Levart A., Salobir J., Rezar V. (2020). Effect of the supplementation of olive leaves and olive cake on growth performance and bone mineralisation of broiler chickens. Acta Fytotech. Zootech., 23: 105–111.
  193. Peng Q.Y., Li J.D., Li Z., Duan Z.Y., Wu Y.P. (2016). Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed Sci. Technol., 214: 148–153.
  194. Peng W., Talpur, M. Z., Zeng, Y., Xie, P., Li, J., Wang, S., Wang, L., Zhu, X., Gao, P., Jiang, Q., Shu, G., Zhang, H. (2022). Influence of fermented feed additive on gut morphology, immune status, and microbiota in broilers. BMC Vet. Res., 18: 218.
  195. Pesti G.M., Choct M. (2023). The future of feed formulation for poultry: Toward more sustainable production of meat and eggs. Anim. Nutr., 15: 71–87.
  196. Phillips C.J.C., Hosseintabar-Ghasemabad B., Gorlov I.F., Slozhenkina M.I., Mosolov A.A., Seidavi A. (2023). Immunomodulatory effects of natural feed additives for meat chickens. Life, 13: 1287.
  197. Predescu N.C., Stefan, G., Rosu, M.P., Papuc, C. (2024). Fermented feed in broiler diets reduces the antinutritional factors, improves productive performances and modulates gut microbiome – A review. Agriculture, 14: 1752.
  198. Qin Q., Li, Z., Zhang, M., Dai, Y., Li, S., Wu, H., Zhang, Z., Chen, P. (2023). Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult. Sci., 102: 102713.
  199. Rafeeq M., Bilal R.M., Alagawany M., Batool F., Yameen K., Farag M.R., Ali S., Elnesr S.S., El-shall N.A. (2022). The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. World’s Poult. Sci. J., 78: 1067–1085.
  200. Raheel I.A., Orabi, A., Salam, H.S., Hany, G.G. (2020). Immune potentiating effect of bee venom on humoral parameters of innate immunity in broiler chickens. Inter. J. Vet. Sci., 9: 161–163.
  201. Readh A.E.C., Miloud L., Abdelkrim L., Chaïmaa B., Kaddour B. (2023). The impacts of vegetables and fruits by products on growth and health of broiler chickens. Agric. Rev., 44: 493–500.
  202. Ren J., Gao Z., Lu Y., Li M., Hong J., Wu J., Wu D., Deng W., Xi D., Chong Y. (2024). Application of GWAS and mGWAS in livestock and poultry breeding. Animals, 14: 2382.
  203. Saeed M., Kalhoro S.A., Naveed M.R., Hassan F., Umar M., Rashid M.A., Memon S.A., Soomro F., Arain M.A., Chao S. (2018). Prospects of royal jelly as a potential natural feed additive in poultry diets. World’s Poult. Sci. J., 74: 499–508.
  204. Sajid Q.U.A., Asghar M.U., Tariq H., Wilk M., Płatek A. (2023). Insect meal as an alternative to protein concentrates in poultry nutrition with future perspectives (An Updated Review). Agriculture, 13: 1239.
  205. Saki A.A., Abbasinezhad M., Rafati A.A. (2014). Iron nanoparticles and methionine hydroxy analogue chelate in ovo feeding of broiler chickens. Inter. J. Nanosci. Nanotechnol., 10: 187–196.
  206. Salahuddin M., Abdel-Wareth A.A.A., Hiramatsu K., Tomberlin J.K., Luza D., Lohakare J. (2024). Flight toward sustainability in poultry nutrition with black soldier fly larvae. Animals, 14: 510.
  207. Salmanzadeh M., Shahryar H., Lotfi A. (2015). Effect of in ovo feeding of butyric acid on hatchability, performance and small intestinal morphology of turkey poults. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21: 19–25.
  208. Schell K.R., Fernandes K.E., Shanahan E., Wilson I., Blair S.E., Carter D.A., Cokcetin N.N. (2022). The potential of honey as a prebiotic food to re-engineer the gut microbiome toward a healthy state. Front. Nutr., 9: 957932.
  209. Schilling M.W., Gura S.S., Ladner D.A., Davis A.J. (2021). Effects of black soldier fly larvae meal on growth performance, carcass characteristics, and meat quality of broiler chickens. Poult. Sci., 100: 299–308.
  210. Sedgh-Gooya, S., Torki, M., Darbemamieh, M., Khamisabadi, H., Abdolmohamadi, A. (2021). Growth performance and intestinal morphometric features of broiler chickens fed on dietary inclusion of yellow mealworm (Tenebrio molitor) larvae powder. Vet. Med. Sci., 8: 2050–2058.
  211. Selvam R., Suresh S., Saravanakumar M., Chandrasekaran C.V., Prashanth D. (2018). Alleviation of Heat Stress by a Polyherbal Formulation, Phytocee™: Impact on Zootechnical Parameters, Cloacal Temperature, and Stress Markers. Phcog. Res., 10: 1–8.
  212. Sethy K., Swain P., Behera K., Nayak S.M., Barik S.R., Patro P., Meher P. (2016). Effect of turmeric (Curcuma longa) supplementation on growth and blood chemistry of broilers. Exp. Anim. Med. Res., 6: 75–79.
  213. Shehata A.A., Yalçın S., Latorre J.D., Basiouni S., Attia Y.A., Abd El-Wahab A., Visscher C., El-Seedi H.R., Huber C., Hafez H.M., Eisenreich W., Tellez-Isaias G. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms, 10: 395.
  214. Shirani V., Jazi V., Toghyani M., Ashayerizadeh A., Sharifi F., Barekatain R. (2019). Pulicaria gnaphalodes powder in broiler diets: consequences for performance, gut health, antioxidant enzyme activity, and fatty acid profile. Poult. Sci., 98: 2577–2587.
  215. Shi S.R., Lu J., Tong H.B., Zou J.M., Wang K.H. (2012). Effects of graded replacement of soybean meal by sunflower seed meal in laying hen diets on hen performance, egg quality, egg fatty acid composition, and cholesterol content. J. Appl. Poult. Res., 21: 367–374.
  216. Shim M.Y., Pesti G.M., Bakalli R.I., Tillman P.B., Payne R.L. (2011). Evaluation of corn distillers dried grains with solubles as an alternative ingredient for broilers. Poult. Sci., 90: 369–376.
  217. Siddiqui S.A., Erol Z., Rugji J., Taşçı F., Kahraman H.A., Toppi V., Musa L., Di Giacinto G., Bahmid N.A., Mehdizadeh M., Castro-Muñoz R. (2023). An overview of fermentation in the food industry – looking back from a new perspective. Bioresour. Bioprocess., 10: 85.
  218. Sizova E., Yausheva E., Kosyan D., Miroshnikov S. (2015). Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Modern Appl. Sci., 9: 17.
  219. Smith A.B., Jones C.D. (2020). Effects of oregano essential oil on growth performance and gut microbiota in broiler chickens. Poult. Sci., 99: 1234–1245.
  220. Sogari G., Bellezza Oddon S., Gasco L., van Huis A., Spranghers T., Mancini S. (2023). Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17: 100904.
  221. Solecka K., Zonenberg Ł. (2024). The use of insects in poultry nutrition – a review. Anim. Sci. Genet., 20: 23–36.
  222. Staniek A., Bouwmeester H., Fraser P.D., Kayser O., Martens S., Tissier A., van der Krol S., Wessjohann L., Warzecha H. (2013). Natural products – modifying metabolite pathways in plants. Biotechnol. J., 8: 1159–1171.
  223. Sugiharto S., Ranjitkar S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1–10.
  224. Suliman G.M., Hussein E.O.S., Alsagan A., Al-Owaimer A.N., Alhotan R., Al-Baadani, H.H., Ba-Awadh H.A., Qaid M.M., Swelum A.A. (2023). Effects of adding nanoemulsified plant oil and probiotics to drinking water during different periods besides sex on processing characteristics, physicochemical properties, and meat quality traits of broiler chickens. Front. Vet. Sci., 10: 1133605.
  225. Sun B., Hou L., Yang Y. (2021). The development of the gut microbiota and short-chain fatty acids of layer chickens in different growth periods. Front. Vet. Sci., 8: 666535.
  226. Tabashsum Z., Peng, M., Kahan, E., Rahaman, S.O., Biswas, D. (2019). Effect of conjugated linoleic acid overproducing Lactobacillus with berry pomace phenolic extracts on Campylobacter jejuni pathogenesis. Food Function, 10: 296–303.
  227. Tavares M.N., Pereira R.T., Silva A.L., Lemes L.R., Menten J.F.M., Gameiro A.H. (2022). Economic viability of insect meal as a novel ingredient in diets for broiler chickens. J. Insects Food Feed, 8: 1015–1025.
  228. Thomson C., Garcia A.L., Edwards C.A. (2021). Interactions between dietary fibre and the gut microbiota. Proceedings of the Nutrition Society, 80: 398–408.
  229. Tiboldo G., Arata L., Coderoni S. (2024). Back to the future: Are consumers ready to eat insect-fed poultry food products from a circular farming system? An assessment for Italy. Future Foods, 9: 100290.
  230. Uni Z., Ferket P.R. (2003). Enhancement of development of oviparous species by in ovo feeding.
  231. Uni Z., Ferket P.R., Tako E., Kedar O. (2005). In ovo feeding improves energy status of late-term chicken embryos. Poult. Sci., 84: 764–770.
  232. Uni Z., Ferket R.P. (2004). Methods for early nutrition and their potential. World’s Poult. Sci. J., 60: 101–111.
  233. Urban J., Kareem K.Y., Matuszewski A., Bień D., Ciborowska P., Lutostański K., Michalczuk M. (2024). Enhancing broiler chicken health and performance: the impact of probiotics on growth, gut microbiota, antioxidants, and immunity. Phytochem. Rev., 2024.
  234. Ürüşan H., Bölükbaşi S. (2017). Effects of dietary supplementation levels of turmeric powder (Curcuma longa) on performance, carcass characteristics and gut microflora in broiler chickens. J. Anim. Plant Sci., 27: 732–736.
  235. Van der Spiegel, M., 2016. Safety of foods based on insects. In: Prakash, V., Martin-Belloso, O., Keener, L., Astley, S., Braun, S., McMahon, H. and Lelieveld, H. (eds.) Regulating safety of traditional and ethnic foods. Elsevier Academic Press, New York, NY, USA, pp. 205–216.
  236. Van Huis A. (2022). Edible Insects: Challenges and Prospects. Entomol. Res., 52: 161–177.
  237. Vauterin A., Steiner B., Sillman J., Kahiluoto H. (2021). The potential of insect protein to reduce food-based carbon footprints in Europe: The case of broiler meat production. J. Cleaner Prod., 320: 128799.
  238. Veldkamp T., Meijer N., Alleweldt F., Deruytter D., Van Campenhout L., Gasco L., Roos N., Smetana S., Fernandes A., Van der Fels-Klerx H.J. (2022). Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: A SUSINCHAIN perspective. Insects 13: 281.
  239. Vieira S.L., Moran E.T.J. (1999). Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. World’s Poult. Sci. J., 55: 125–142.
  240. Vlaicu P.A., Untea A.E., Varzaru I., Saracila M., Oancea A.G. (2023). Designing nutrition for health—incorporating dietary by-products into poultry feeds to create functional foods with insights into health benefits, risks, bioactive compounds, food component functionality and safety regulations. Foods, 12: 4001.
  241. Vlaicu P.A., Untea A.E., Oancea A.G. (2024). Sustainable poultry feeding strategies for achieving zero hunger and enhancing food quality. Agriculture, 14: 1811.
  242. Wadood A.A., Zhang X. (2024). The omics revolution in understanding chicken reproduction: A comprehensive review. Curr. Issues Mol. Biol., 46: 6248–6266.
  243. Wang C., Wang, M.Q., Ye, S.S., Tao, W.J., Du, Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci., 90: 2223–2228.
  244. Wang J., Deng L., Chen M., Che Y., Li L., Zhu L., Chen G., Feng, T. (2024). Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Anim. Nutr., 17: 244–264.
  245. Wang J., Lin J., Wang J., Wu S., Qi G., Zhang H., Song Z. (2020). Effects of in ovo feeding of N-acetyl-L-glutamate on early intestinal development and growth performance in broiler chickens. Poult. Sci., 99: 3583–3593.
  246. Wang S., Zeng X., Yang Q., Qiao S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci., 17: 603.
  247. Wang Y., Qi H. (2024). Waste to wealth: bioprocessing methods for the conversion of food byproducts into value-added products: A mini-review. Curr. Opin. Food Sci., 60: 101215.
  248. Williams J.A., Taylor L.M., Anderson N.R. (2018). Utilization of poultry litter as a feed ingredient for broiler chickens. Agric. Food Chem., 66: 10100–10108.
  249. Windisch W.M., Schedle K., Plitzner C., Kroismayr A. (2008). Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci., 86: E140–148.
  250. Wu Q., Patočka J., Kuča K. (2018). Insect antimicrobial peptides, a Mini Review. Toxins, 10: 461.
  251. Yarmohammadi Barbarestani S., Jazi V., Mohebodini H., Ashayerizadeh A., Shabani A., Toghyani M. (2020). Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci., 233: 103958.
  252. Ye F., Jie H., Gan J., Liu K., Zhang Z., Xiang H., Liu W., Yin Q., Chen S., Yu H., Li H. (2024). Genome-wide association analysis of key genes for feed efficiency in Qingyuan Partridge chickens. Poult. Sci., 104: 104632.
  253. Yue Y., Luasiri P., Li J., Laosam P., Sangsawad P. (2024). Research advancements on the diversity and host interaction of gut microbiota in chickens. Front. Vet. Sci., 11: 1492545.
  254. Xu F., Wu, H., Xie, J., Zeng, T., Hao, L., Xu, W., Lu, L. (2023). The effects of fermented feed on the growth performance, antioxidant activity, immune function, intestinal digestive enzyme activity, morphology, and microflora of yellow-feather chickens. Animals, 13: 3545.
  255. Zadeh Z.S., Kheiri F., Faghani M. (2019). Use of yellow mealworm (Tenebrio molitor) as a protein source on growth performance, carcass traits, meat quality and intestinal morphology of Japanese quails (Coturnix japonica). Vet. Anim. Sci., 8: 100066.
  256. Zhou X., Wang, Y. (2011). Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci., 90: 680–686.
  257. Zhang M., You M., Ma N., Lv J. (2024). Advance in the application of metabolomics technology in poultry. Front. Vet. Sci., 11: 1501630.
  258. Zhu F., Zhang B., Li J., Zhu L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poult. Sci., 99: 2573–2580.
  259. Zhu X., Tao L., Liu H., Yang G. (2023). Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the microbiota community in broilers. Poult. Sci., 102: 102629.
  260. Zoidis E., Simitzis P., Kampantais D., Katsoulas P., Pappas A.C., Papadomichelakis G., Goliomytis M. (2022). Dietary orange pulp and organic selenium effects on growth performance, meat quality, fatty acid profile, and oxidative stability parameters of broiler chickens. Sustainability, 14: 1534.
  261. Zou X., Liu M., Li X., Pan F., Wu X., Fang X., Zhou F., Peng W., Tian W. (2024). Applications of insect nutrition resources in animal production. J. Agric. Food Res., 15: 100966.
DOI: https://doi.org/10.2478/aoas-2025-0049 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Jan 30, 2025
|
Accepted on: Apr 16, 2025
|
Published on: Jun 9, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Karim El-Sabrout, Sohail Ahmad, Giovanni Buonaiuto, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT