References
- Abdelhady A.Y., El-Safty S.A., Hashim M., Ibrahim M.A., Mohammed F.F., Elbaz A.M., Abdel-Moneim A.M.E. (2021). Comparative evaluation of single or combined anticoccidials on performance, antioxidant status, immune response, and intestinal architecture of broiler chickens challenged with mixed Eimeria species. Poult. Sci., 100: 101162.
- Agersø Y., Jensen L.B., Givsko M., Roberts M.C. (2002). The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS Microbiol. Lett., 214: 251–256.
- Aladekoyi O., Siddiqui S., Hania P., Hamza R., Gilbride K. (2024). Accumulation of antibiotics in the environment: Have appropriate measures been taken to protect Canadian human and ecological health? Ecotoxicol. Environ. Saf., 280: 116513.
- An J., Chen H., Wei S., Gu J. (2015). Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ. Earth Sci., 74: 5077–5086.
- Barabote R.D., Thekkiniath J., Strauss R.E., Vediyappan G., Fralick J.A., San Francisco M.J. (2011). Xenobiotic efflux in bacteria and fungi: A genomics update. Adv. Enzymol. Relat. Areas Mol. Biol., 77: 237–306.
- Baran A., Kwiatkowska A., Potocki L. (2023). Antibiotics and bacterial resistance – a short story of an endless arms race. Int. J. Mol. Sci., 24: 5777.
- Bartlett J.G., Gilbert D.N., Spellberg B. (2013). Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis., 56: 1445–1450.
- Beyi A.F., Brito-Goulart D., Hawbecker T., Ruddell B., Hassall A., Dewell R., Dewell G., Sahin O., Zhang Q., Plummer P.J. (2021). Enrofloxacin alters fecal microbiota and resistome irrespective of its dose in calves. Microorganisms, 9: 2162.
- Cabezón E., Ripoll-Rozada J., Peña A., de la Cruz F., Arechaga I. (2014). Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev., 39: 81–89.
- Carlson J.C., Mabury S.A. (2006). Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada. Environ. Toxicol. Chem., 25: 1–10.
- Carresi C., Marabelli R., Roncada P., Britti D. (2024). Is the use of monensin another Trojan horse for the spread of antimicrobial resistance? Antibiotics, 13: 129.
- Church N.A., McKillip J.L. (2021). Antibiotic resistance crisis: challenges and imperatives. Biologia, 76: 1535–1550.
- Cycoń M., Mrozik A., Piotrowska-Seget Z. (2019). Antibiotics in the soil environment – degradation and their impact on microbial activity and diversity. Front Microbiol., 10.
- De Leener E., Martel A., De Graef E.M., Top J., Butaye P., Haesebrouck F., Willems R., Decostere E. (2005). Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm(B) genes. Appl. Environ. Microbiol., 71: 2766–2770.
- De Simeis D., Serra S. (2021). Actinomycetes: A never-ending source of bioactive compounds – an overview on antibiotics production. Antibiotics, 10: 483.
- Deng J., Zhang W., Zhang L., Qin CH., Wang H., Ling W. (2024). Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. Environ. Inter., 191: 108972.
- Dróżdż D., Wystalska K., Malińska K., Grosser A., Grobelak A., Kacprzak M. (2020). Management of poultry manure in Poland – Current state and future perspectives. J. Manag. Stud., 264: 110327.
- European Commission (2021). Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC. Official Journal of the European Union L, 180: 84–109.
- European Medicines Agency (2022). ICH Guideline Q2(R2) on Validation of Analytical Procedures; Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Feng M., Liu Y., Yang L., Li. Z. (2023). Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste – A review. Biores. Technol., 390: 129861.
- Frąc M., Pertile G., Panek J., Gryta A., Oszust K., Lipiec J., Usowicz B. (2021). Mycobiome composition and diversity under the long-term application of spent mushroom substrate and chicken manure. Agronomy, 11: 410.
- Gauthier H., Yargeau V., Cooper D.G. (2010). Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci. Total Environ., 408: 1701–1706.
- Gbylik-Sikorska M., Posyniak A., Śniegocki T., Sell B., Gajda A., Tomczyk G., Żmudzki J. (2016). Effect of doxycycline concentrations in chicken tissues as a consequence of permanent exposure to enrofloxacin traces in drinking water. J. Vet. Res., 60: 233–238.
- Gillings M.R., Gaze W.H., Pruden A., Smalla K., Tiedje J.M., Zhu Y.G. (2014). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J., 9: 1269–1279.
- Gong P., Liu H., Xin Y., Wang G., Dai X., Yao J. (2020). Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Biores. Technol., 318: 124271.
- Grabowski L., Węgrzyn G., Węgrzyn A., Podlacha M. (2022). Highly different effects of phage therapy and antibiotic therapy on immunological responses of chickens infected with Salmonella enterica serovar Typhimurium. Front. Immunol., 13: 956833.
- Guillouzo A., Guguen-Guillouzo C. (2020). Antibiotics-induced oxidative stress. Curr. Opin. Toxicol., 20–21: 23–28.
- Guo T., Lou C., Zhai W., Tang X., Hashmi M.Z., Murtaza R., Li Y., Liu X., Xu J. (2018). Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ., 635: 995–1003.
- Hobson-Frohock A., Johnson H.A. (1983). Coccidiostat residues in poultry excreta. J. Sci. Food Agricult., 34: 37–44.
- Huang J., Yu Z., Gao H., Yan X., Chang J., Wang C., Hu J., Zhang L. (2017). Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices. PLoS One, 12: e0178110.
- Hybrid Turkeys (2020). Commercial management guide and nutrient guidelines for hybrid turkeys. Accessed on July 2024. http://www.hybridturkeys.com
- Iwu C.D., Korsten L., Okoh A.I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen, 9: e1035.
- Jacoby G.A., Strahilevitz J., Hooper D.C. (2014). Plasmid-mediated quinolone resistance. Microbiol. Spectr., 2.
- Janes-Bassett V., Blackwell M.S.A., Blair G., Davies J., Haygarth P.M., Mezeli M.M., Stewart G. (2022). A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biol. Biochem., 165: 108537.
- Janser I. (2016). Tetracycline Amide Antibiotics. In: Bioactive Carboxylic Compound Classes. John Wiley and Sons, pp. 115–132.
- Kumar A., Pal D. (2018). Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng., 6: 52–58.
- Laloučková K., Skřivanová E. (2019). Antibiotic resistance in livestock breeding: a review. Sci. Agric. Bohem., 50: 15–22.
- Leclercq S.O., Wang C., Zhu Y., Wu H., Du X., Liu Z., Feng J. (2016). Diversity of the tetracycline mobilome within a Chinese pig manure sample. Appl. Environ. Microbiol., 82: 6454–6462.
- Li Z., QI W., Feng Y., Liu Y., Ebrahim S., Long J. (2019). Degradation mechanisms of oxytetracycline in the environment. J. Integr. Agric., 18: 1953–1960.
- Lima T., Domingues S., Da Silva G.J. (2020). Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci., 7: 110.
- Liu L., Yin Q., Hou Y., Ma R., Li Y., Wang Z., Yang G., Liu Y., Wang H. (2024). Fungus reduces tetracycline-resistant genes in manure treatment by predation of bacteria. Sci. Total Environ., 906: 167462.
- Łowicki D., Huczyński A. (2013). Structure and antimicrobial properties of monensin A and its derivatives: Summary of the achievements. Biomed. Res. Int., 2013: 742149.
- Mancabelli L., Ferrario C., Milani C., Mangifesta M., Turroni F., Duranti S., Lugli G.A., Viappiani A., Ossiprandi M.C., Van Sinderen D., Ventura M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol., 18: 4727–4738.
- Manyi-Loh C.E., Mamphweli S.N., Meyer E.L., Makaka G., Simon M., Okoh A.I. (2016). An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health., 13: 843.
- Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23: 795.
- Martínez-Carballo E., González-Barreiro C., Scharf S., Gans O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut., 148: 570–579.
- Massé D.I., Saady N.M., Gilbert Y. (2014). Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals, 4: 146–163.
- Menezes-Blackburn D., Giles C., Darch T., George T.S., Blackwell M., Stutter M., Shand C., Lumsdon D., Cooper P., Wendler R., Brown L., Almeida D.S., Wearing C., Zhang H., Haygarth P.M. (2018). Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant Soil, 427: 5–16.
- Męcik M., Buta-Hubeny M., Paukszto Ł., Maździarz M., Wolak I., Harnisz M., Korzeniewska E. (2023). Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. J. Environ. Manag., 348: 119303.
- Mikulski D., Juśkiewicz J., Ognik K., Zduńczyk P., Smagieł R., Jankowski J. (2022). Gastrointestinal tract and neuroendocrine system responses of young turkeys to the early administration of antibiotics or feeding a diet containing a coccidiostat. Poult. Sci., 101: 102098.
- Mikulski D., Juśkiewicz J., Ognik K., Fotschki B., Tykałowski B., Jankowski J. (2024). Gastrointestinal response to the early administration of antimicrobial agents in growing turkeys infected with Escherichia coli. Poult. Sci., 103: 103720.
- Miśkowiec P., Olech Z. (2020). Searching for the correlation between the activity of urease and the content of nickel in the soil samples: The role of metal speciation. J. Soil Sci. Plant Nutr., 20: 1904–1911.
- Nicholson F.A., Chambers B.J., Smith K.A. (1996). Nutrient composition of poultry manures in England and Wales. Bioresour. Technol., 58: 279–284.
- Ouyang B., Yang C., Lv Z., Chen B., Tong L., Shi J. (2024). Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. Environ. Inter., 191: 108989.
- Pachepsky Y.A., Sadeghi A.M., Bradford S.A., Shelton D.R., Guber A.K., Dao T. (2006). Transport and fate of manure-borne pathogens: Modeling perspective. Agric. Water Manag., 86: 81–92.
- Parks D.H., Tyson G.W., Hugenholtz P., Beiko R.G. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bio-informatics, 30: 3123–3124.
- Perron G.G., Lee A.E.G., Wang Y., Huang W.E., Barraclough T.G. (2012). Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Proc. R. Soc. B Biol. Sci., 279: 1477–1484.
- Qian X., Gu J., Sun W., Wang X.J., Su J.Q., Stedfeld R. (2018). Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater., 344: 716–722.
- R Core Team (2019). R: A language and environment for statistical computing; R foundation for statistical computing: Vienna, Austri; https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 5 March 2024).
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation), https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R1069&from=EN (access 23 December 2024).
- Rodríguez-Martínez J.M., Cano M.E., Velasco C., Martínez-Martínez L., Pascual A. (2011). Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother., 17: 149–182.
- Roth N., Käsbohrer A., Mayrhofer S., Zitz U., Hofacre Ch., Domig K.J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult. Sci., 98: 1791–1804.
- RStudio Team (2019). RStudio: Integrated Development; RStudio, Inc.: Boston, MA, USA. Available online: http://www.rstudio.com/ (access on 13 July 2024).
- Santás-Miguel V., Díaz-Raviña M., Martín A., García-Campos E., Barreiro A., Núñez-Delgado A., Álvarez-Rodríguez E., Arias-Estévez M., Fernández-Calviño D. (2021). Soil enzymatic activities and microbial community structure in soils polluted with tetracycline antibiotics. Agronomy, 11: 906.
- Santos-Lopez A., Marshall C.W., Scribner M.R., Snyder D.J., Cooper V.S. (2019). Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. Elife, 8: 1–23.
- Saraiva M.M.S., Silva N.M.V., Ferreira V.A., Moreira Filho A.L.B., Givisiez P.E.N., Freitas Neto O.C., Berchieri Júnior A., Gebr-eyes W.A., de Oliveira C.J.B. (2022). Residual concentrations of antimicrobial growth promoters in poultry litter favour plasmid conjugation among Escherichia coli. Lett. Appl. Microbiol., 74: 831–838.
- Seo K.W., Lee Y.J. (2021). Molecular characterization of fluoroquino-lone-resistant Escherichia coli from broiler breeder farms. Poult. Sci., 100: 101250.
- Shang Z., Salim A.A., Khalil Z., Bernhardt P.V., Capon R.J. (2016). Fungal biotransformation of tetracycline antibiotics. J. Org. Chem., 81: 6186–6194.
- Simjee S., Heffron A.L., Pridmore A., Shryock T.R. (2012). Reversible monensin adaptation in Enterococcus faecium, Enterococcus faecalis and Clostridium perfringens of cattle origin: Potential impact on human food safety. J. Antimicrob. Chemother., 67: 2388–2395.
- Sun X., Leng Y., Wan D., Chang F., Huang Y., Li Z., Xiong W., Wang J. (2021). Transformation of tetracycline by manganese peroxidase from Phanerochaete chrysosporium. Molecules, 26: 6803. TIBCO Software Inc. Statistica. (2017). Data Analysis Software System, version 13. https://www.statistica.com (access on 13 July 2024).
- Udikovic-Kolic N., Wichmann F., Broderick N.A., Handelsman J. (2014). Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl. Acad. Sci. USA., 111: 15202–15207.
- Uluseke C., Kaster M.K., Thorsen K., Basiry D., Shobana S., Jain M., Kumar G., Kommedal R., Pala-Ozkok I. (2021). A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. J. Front. Microbiol., 12: 717809.
- Wallenstein M.D., Burns R.G. (2011). Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Methods of Soil Enzymology, Dick R.P. (ed.). Soil Science Society of America, Madison, Wisconsin, USA, pp. 35–55.
- Warnes G.R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., Lumley T., Maechler M., Magnusson M., Moeller S., Schwartz M., Venables B., Galili T. (2020). Gplots: Various R programming tools for plotting data. R Package Version 2.17.0. https://cran.r-project.org/package=gplots (access on 5 March 2024).
- Wei X., Wu S.C., Nie X.P., Yediler A., Wong. M.H. (2009). The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Health Part B, 44: 461–471.
- Winckler C., Grafe A. (2001). Use of veterinary drugs in intensive animal production. J. Soils Sediments, 1: 66–70.
- World Health Organization (WHO) (2016). Global action plan on antimicrobial resistance. [WWW Document]. WHO. Retrieved from https://www.who.int/antimicrobial-resistance/global-action-plan/en/
- Wyszkowska J., Borowik A., Kucharski J. (2022). The role of grass compost and Zea mays in alleviating toxic effects of tetracycline on the soil bacteria community. Int. J. Environ. Res. Public Health, 19: 7357.
- Wyszkowska J., Borowik A., Zaborowska M., Kucharski J. (2023). The usability of sorbents in restoring enzymatic activity in soils polluted with petroleum-derived products. Materials, 16: 3738.
- Wyszkowska J., Borowik A., Zaborowska M., Kucharski J. (2024). The potential for restoring the activity of oxidoreductases and hydrolases in soil contaminated with petroleum products using perlite and dolomite. Appl. Sci., 14: 3591.
- Yang W., Moore I.F., Koteva K.P, Bareich D.C, Hughes D.W., Wright G.D. (2004). TetX is a flavin dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem., 279: 52346–52352.
- Zhang C., Barron L., Sturzenbaum S. (2021). The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial ecosystem. Sci. Total Environ., 781: 146684.
- Zhou Z., Yao H. (2020). Effects of composting different types of organic fertilizer on the microbial community structure and antibiotic resistance genes. Microorganisms, 8: 268.
- Zhu Y.G., Johnson T.A., Su J.Q., Qiao M., Guo G.X., Stedtfeld R.D., Hashsham S.A., Tiedje J.M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA, 110: 3435–3440.