References
- Aebi H. (1984). [13] Catalase in vitro. In Methods in enzymology. Elsevier., 105: 121–126.
- Altomare A.A., Baron G., Aldini G., Carini M., D’Amato A. (2020). Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr., 8: 2652–2661.
- Anderson D., Siwicki A. (1995). Basic hematology and serology for fish health programs.
- AOAC (2010). Official Methods of Analysis of Association of Official Analytical Chemists. 18th edn. Washington DC.
- APHA (2012). Standard methods for the examination of water and wastewater. American Public Health Association., 22nd ed., New York, USA.
- Battampara P., Sathish T.N., Reddy R., Guna V., Nagananda G.S., Reddy N., Ramesha B.S., Maharaddi V.H., Rao A.P., Ravikumar H.N., Biradar A., Radhakrishna P.G. (2020). Properties of chitin and chitosan extracted from silkworm pupae and egg shells. Int. J. Biol. Macromol., 161: 1296–1304.
- Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44: 276–287.
- Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619.
- Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.
- Bui H.T.D., Khosravi S., Fournier V., Herault M., Lee K.J. (2014). Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, 418: 11–16.
- Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 9: 251.
- Chaklader M.R., Howieson J., Siddik M.A., Foysal M.J., Fotedar R. (2021). Supplementation of tuna hydrolysate and insect larvae improves fishmeal replacement efficacy of poultry by-product in Lates calcarifer (Bloch, 1790) juveniles. Sci. Rep., 11: 4997.
- Chandhini S., Trumboo B., Jose S., Varghese T., Rajesh M., Kumar V.R. (2021). Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiol. Biochem., 47: 1011–1031.
- Chemello G., Renna M., Caimi C., Guerreiro I., Oliva-Teles A., Enes P., Biasato I., Schiavone A., Gai F., Gasco L. (2020). Partially defatted Tenebrio molitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): effects on growth performance, diet digestibility and metabolic responses. Animals., 10: 229.
- Cherry I.S., Crandall Jr L.A. (1932). The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. Am. J. Physiol-Legacy Content., 100(2): 266–273.
- Chowdhury S., Saikia S.K. (2020). Oxidative Stress in Fish: A Review. J. Sci. Res., 12: 145–160.
- Damodaran S, Parkin K.L. (2017). Amino acids, peptides, and proteins. In Fennema’s food chemistry., CRC press: 235–356.
- Das R., Das B.K., Hassan M.A., Krishna G., Chadha N.K., Rawat K.D., Jena K. (2023). Valorization of the insect waste as a source of dietary protein in replacing the fishmeal protein for the cage reared Pangasianodon hypophthalmus: An approach to search the alternate non-conventional feed resource of animal origin. Anim. Feed Sci. Technol., 303: 115691.
- De Marco G., Cappello T., Maisano M. (2023). Histomorphological changes in fish gut in response to prebiotics and probiotics treatment to improve their health status: A review. Animals., 13: 2860.
- Drapeau G.R. (1976). [38] Protease from Staphyloccus aureus. In Methods in enzymology, vol 45. Elsevier., 45: 469–475.
- Duncan D.B. (1955). Multiple range and multiple F tests. Biometrics., 11: 1–42.
- Fan Z., Wu D., Li C., Zhou M., Wang L., Zhang H., Li J., Rong X., Zhao D., Wang J. (2024). Application of fish protein hydrolysates in common carp (Cyprinus carpio) diets for fish meal sparing: Evidence from growth, intestinal health and microflora composition. Aquac. Rep., 36: 102160.
- Gangadhar B., Umalatha H., Ganesh H., Saurabh S., Sridhar N. (2017). Digestibility of dry matter and nutrients from three ingredients by the carps, Labeo fimbriatus (Bloch, 1795) and Cyprinus carpio Linnaeus, 1758 with a note on digestive enzyme activity. Indian J. Fish., 64: 75–84.
- Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F. (2019). Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals, 9: 170.
- Ha N., Jesus G.F.A., Gonçalves A.F.N., de Oliveira N.S., Sugai J.K., Pessatti M.L., Mouriño J.L.P., Fabregat T.E.H.P. (2019). Sardine (Sardinella spp.) protein hydrolysate as growth promoter in South American catfish (Rhamdia quelen) feeding: Productive performance, digestive enzymes activity, morphometry and intestinal microbiology. Aquaculture, 500: 99–106.
- Hasan I., Gai F., Cirrincione S., Rimoldi S., Saroglia G., Terova G. (2023). Chitinase and insect meal in aquaculture nutrition: A comprehensive overview of the latest achievements. Fishes, 8: 607.
- Henry M., Gasco L., Piccolo Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol., 203: 1–22.
- Hossain M., Latifa G., Rahman M. (2008). Observations on induced breeding of snakehead murrel, Channa striatus (Bloch, 1793). Int. J. Sustain. Crop. Prod., 3: e8.
- Hua K., Cobcroft J. M., Cole A., Condon K., Jerry D.R., Mangott A., Praeger C., Vucko M.J., Zeng C., Zenger K., Strugnell J.M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth., 1: 316–329.
- Huntington T.C., Hasan M.R. (2009). Fish as feed inputs for aquaculture–practices, sustainability and implications: a global synthesis. FAO Fisheries and Aquaculture Technical Paper., 518: 1–61.
- Hussain S.M., Khurram F., Naeem A., Hussain Shah S.Z., Sarker P.K., Naeem E., Arsalan M.Z.U.H., Riaz D., Yousaf Z., Faisal M., Amjad M. (2024). A review on the prospects and potentials of fishmeal replacement with different animal protein sources. Int. Aquat. Res., 16: 7.
- IACUC F. (2014). Guidelines for the preparation and use of MS222 (TMS, tricaine methanesulfonate) for animal procedures. Florida Atlantic University, USA.
- Ighodaro O.M., Akinloye O.A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med., 54: 287–293.
- Ijaiya A.T., Eko E.O. (2009). Effect of Replacing Dietary Fish Meal with Silkworm (Anaphe infracta) Caterpillar Meal on Performance, Carcass Characteristics and Haematological Parameters of Finishing Broiler Chicken. Pak. J. Nutr., 8: 850–855.
- Ishida Y., Fujita T., Asai K. (1981). New detection and separation method for amino acids by high-performance liquid chromatography. J. Chromatogr. A., 204: 143–148.
- Ji H., Zhang J.L., Huang J.Q., Cheng X.F., Liu C. (2015). Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Res., 46: 1209–1221.
- Kamarudin M.S., Rosle S., Yasin I.S.M. (2021). Performance of defatted black soldier fly prepupae meal as fishmeal replacement in the diet of lemon fin barb hybrid fingerlings. Aquac. Rep., 21: 100775.
- Karthick Raja P., Aanand S., Stephen Sampathkumar J., Padmavathy P. (2019). Silkworm pupae meal as alternative source of protein in fish feed. J. Entomol. Zool. Stud., 7: 78–85.
- Kristinsson H.G., Rasco B.A. (2000). Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Crit. Rev. Food. Sci. Nutr., 40: 43–81.
- Kumar R., Gokulakrishnan M.G., Debbarma J., Damle D.K. (2022). Advances in captive breeding and seed rearing of striped murrel Channa striata, a high value food fish of Asia. Anim. Reprod. Sci., 238: 106957.
- Kurbanov A.R., Milusheva R.Y., Rashidova S.S., Kamilov B.G. (2015). Effect of replacement of fish meal with silkworm (Bombyx mori) pupa protein on the growth of Clarias gariepinus fingerling. Int. J. Fish. Aquat. Stud., 2: 25–27.
- Kouřimská L., Adámková A. (2016). Nutritional and sensory quality of edible insects. J. Nutr. Food Secur., 4: 22–26.
- Lee J., Choi I.C., Kim K.T., Cho S.H., Yoo J.Y. (2012). Response of dietary substitution of fishmeal with various protein sources on growth, body composition and blood chemistry of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846). Fish Physiol. Biochem., 38: 735–744.
- Livak K.J., Schmittgen T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods., 25: 402–408.
- Longvah T., Mangthya K., Ramulu P. (2011). Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem., 128: 400–403.
- Luo F.Y., Ning X.L., Wu G.Z., Li B.X., Li Y.Y., He J.F. (2010). Study on antiseptic antibacterial effect of natural antimicrobial peptides from silkworm pupa on the fresh pork. Sci. Technol. Food Ind., 3: 117–118.
- Mahato I.S., Timalsina P., Paudel K., Shrestha A., Bhusal C., Kunwar P. (2023). Effects of replacing dietary shrimp meal and soybean meal with silkworm (Bombyx mori) pupae meal on growth performance of rainbow trout Oncorhynchus mykiss. Int. J. Fish. Aqua. Stud., 11: 21–25.
- Makkar H.P., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed sci. Technol., 197: 1–33.
- Mishraa, N., Hazarikaa, N.C., Naraina, K., & Mahanta, J. (2003). Nutritive value of non-mulberry and mulberry silkworm pupae and consumption pattern in Assam. India. Nutr. Res., 23: 1303–1311.
- Morales A.E., García-Rejón L., De la Higuera M. (1990). Influence of handling and/or anaesthesia on stress response in rainbow trout. Effects on liver primary metabolism. Comp. Biochem. Physiol. A-Mol. Integr. Physiol., 95: 87–93.
- Mousavi S., Zahedinezhad S., Loh J.Y. (2020). A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aqua. Res., 12: 100–115.
- Musa, A.F., Cheang J.M. (2022). Haruan Extract (Channa striatus) as an effective mediator in promoting wound healing. Skin Grafts for Successful Wound Closure., 1: 29.
- Nandeesha M.C., Gangadhara B., Varghese T.J. and Keshavanath P. (2000). Growth response and flesh quality of common carp, Cyprinus carpio fed with high levels of non-defatted silkworm pupae. Asian Fish. Sci., 13: 235–242.
- Ni H., Chen H. X., Yang Y.Y., Tao L. (1998). Studies on extraction and preparation technique of silkworm chrysalis (Bombyx mori L.) pupa chitin and chitosan. Journal of Hubei University (Natural Science Edition)., 20: 94–96.
- Nowak V., Persijn D., Rittenschober D., Charrondiere U.R. (2016). Review of food composition data for edible insects. Food Chem., 193: 39–46.
- Ochoa S. (1955). Malic dehydrogenase and ‘malic’enzyme. Methods of Enzymology., 1: 735–745.
- Olsen R.L., Hasan M.R. (2012). A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends in Food Sci. Technol., 27: 120–128.
- Oso J. (2014). Growth Performance and Nutrient Utilization Efficiency of Clarias gariepinus Juveniles Fed Bombyx mori (Mulberry silkworm) Meal as a Partial Replacement for Fishmeal. Br. J. Appl. Sci. Technol., 4: 3805–3812.
- Petrova I., Tolstorebrov I., Eikevik T.M. (2018). Production of fish protein hydrolysates step by step: Technological aspects, equipment used, major energy costs and methods of their minimizing. Int. Aqua. Res., 10: 223–241.
- Rahimnejad S., Hu S., Song K., Wang L., Lu K., Wu R., Zhang C. (2019). Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 510: 150–159.
- Rahimnejad S., Lee S.M., Park H.G., Choi J. (2017). Effects of dietary inclusion of Chlorella vulgaris on growth, blood biochemical parameters, and antioxidant enzyme activity in olive flounder, Paralichthys olivaceus. J. World Aqua. Soc., 48: 103–112.
- Ramji B., Samraj A., Kumar S.S. (2024). Performance of crustacean and insect meal-based diets on the growth and digestive enzyme profile of pearlspot Etroplus suratensis (Bloch, 1790): Influence of crustacean and insect meal on pearlspot, Etroplus suratensis. Indian J. Fish., 71.
- Rao K.S.P., Rao K.R. (1987). The possible role of glucose-6-phosphate dehydrogenase in the detoxification of methyl parathion. Toxicol. Lett., 39: 211–214.
- Rick W., Stegbauer H.P. (1974). α-Amylase measurement of reducing groups. In Methods of enzymatic analysis. Elsevier, pp. 885–890.
- Salem M., Khalafalla M.M.E., Saad I.A.I., El-Hais A.M.A. (2008). Replacement of fish meal by silkworm Bombyx mori pupae meal in Nile tilapia, Oreochromis niloticus diets. Egyp. J. Nutr. Feeds., 11: 611–624.
- Samantaray K., Mohanty S.S. (1997). Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata. Aquaculture, 156: 241–249.
- Sankaran K., Gurnani S. (1972). On the variation in the catalytic activity of lysozyme in fishes. Indian J. Biochem. Biophys., 9: 162–165.
- Sathishkumar G., Felix N., Prabu E. (2021). Growth performances and nutrient utilization efficiency of GIFT tilapia reared in floating net cages fed with bioprocessed silkworm pupae meal. Aquac. Nutr., 27: 2786–2797.
- Shakoori M., Gholipour H., Naseri S., Khara H. (2016). Growth, survival, and body composition of rainbow trout, when dietary fish meal is replaced with silkworm pupae. Fish. Aquat. Life., 24: 53–57.
- Siddaiah G.M., Kumar R., Kumari R., Damle D.K., Rasal K.D., Manohar V., Sundaray J.K., Pillai B.R. (2022). Dietary supplementation of fish protein hydrolysate improves growth, feed efficiency and immune response in freshwater carnivore fish, Channa striata fingerlings. Aquac. Res., 53: 3401–3415.
- Siddik M.A.B., Howieson J., Fotedar R. (2019). Beneficial effects of tuna hydrolysate in poultry by-product meal diets on growth, immune response, intestinal health and disease resistance to Vibrio harveyi in juvenile barramundi, Lates calcarifer. Fish & Shellfish Immunol., 89: 61–70.
- Sridharan J., Samraj A., John S.S.K., Antony C. (2023). Effect of replacement of dietary fish meal with silkworm pupae meal and black soldier fly larvae meal as a combination diet on the growth and digestive performance of koi carp Cyprinus carpio var. Koi in the nursery phase. Indian J. Fish., 70.
- Suratip N., Charoenwattanasak S., Klahan R., Herault M., Yuangsoi B. (2023). An investigation into the effects of using protein hydrolysate in low fish meal diets on growth performance, feed utilization and health status of snakehead fish (Channa striata) fingerling. Aquac. Rep., 30: 101623.
- Takahashi-Íñiguez T., Aburto-Rodríguez N., Vilchis-González A.L., Flores M.E. (2016). Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase. J. Zhejiang Univ. Sci., 17: 247–261.
- Vikas P.A. (2023). Biometric and fatty acid profile of the brine shrimp Artemia franciscana enriched with marine microalgal species belonging to prymnesiophytes and eustigmatophytes. J. Krishi. Vigyan., 11: 15–20.
- Vikas P.A., Chakraborty K., Sajeshkumar N.K., Thomas P.C., Sanil N.K., Vijayan K.K. (2014). Quality of six Indian populations of Artemia franciscana for larval finfish culture. J. Appl. Aquac., 26: 271–291.
- Wang G.J., Yin W.F., Wang J., Tang J.L., Huang Y.P. (2007). Effect of polysaccharide of silkworm pupa on immunological function in mice. Journal of Jiangsu University (Medicine Edition)., 17: 373–375.
- Wei Y., Wang J., Zhang X., Duan M., Jia L., Xu H., Liang M., Liu J. (2021). Fish protein hydrolysate supplementation in plant protein-based diets for tiger puffer (Takifugu rubripes) is an effective strategy of fish meal sparing. Aquac. Rep., 20: 100720.
- Wendel A. (1981). Glutathione peroxidase. In Methods in enzymology. Elsevier., 77: 325–333.
- Wu X., He K., Velickovic T.C., Liu Z. (2021). Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr., 9: 4655–4665.
- Xu X., Ji H., Yu H., Zhou J. (2018). Influence of replacing fish meal with enzymatic hydrolysates of defatted silkworm pupa (Bombyx mori L.) on growth performance, body composition and non‐specific immunity of juvenile mirror carp (Cyprinus carpio var. Specularis). Aquac. Res., 49: 1480–1490.
- Yue Y., Cui J. A., Chen X.P. (2013). Separation purification antimicrobial peptides from silkworm chrysalis and physical and chemical properties. Food and Fermentation Technology., 49: 62–67.
- Zhang Q., Bian Y., Zhao Y., Xu Y., Wu J., Wang D., Wang J., Wang A., Qi Z. (2022). Replacement of fishmeal by fermented silkworm pupae meal in diets of largemouth bass (Micropterus salmoides): Effects on growth performance and feed utilization. J. Appl. Ichthyol., 38: 579–585.
- Zhang M., Haga A., Sekiguchi H., Hirano S. (2000). Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvi. Int. J. Biol. Macromol., 27: 99–105.
- Zhou J. S., Chen Y.S., Ji H., Yu E.M. (2017). The effect of replacing fish meal with fermented meal mixture of silkworm pupae, rapeseed and wheat on growth, body composition and health of mirror carp (Cyprinus carpio var. Specularis). Aquac. Nutr., 23: 741–754.
- Zhou Q.C., Mai K.S., Tan B.P., Liu Y.J. (2005). Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum). Aquac. Nutr., 11: 175–182.
- Zuo X., Woo P.T.K. (1997). Natural anti-proteases in rainbow trout, Oncorhynchus mykiss and brook charr, Salvelinus fontinalis and the in vitro neutralization of fish α2-macroglobulin by the metalloprotease from the pathogenic haemoflagellate, Cryptobia salmositica. Parasitology., 114: 375–382.