References
- Abd Elnabi H.E., Hassanen G.D.I., Soltan M.A., Dokdok G.A. (2020). Effect of protease and prebiotic mixtures with free fishmeal diets on physiological responses and histological examinations of the red tilapia, Oreochromis sp. Egypt. J. Aquat. Biol. Fish., 24: 361–378.
- Adeola O., Cowieson A.J. (2011). Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci., 89: 3189 –3218.
- Adeoye A.A., Jaramillo-Torres A., Fox S.W., Merrifield D.L., Davies S.J. (2016). Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: overall performance and effects on intestinal histology and microbiota. Anim. Feed Sci. Technol., http://dx.doi.org/10.1016/j.anifeedsci.2016.03.002
- Adeshina I., Akpoilih B.U., Tiamiyu L.O., Badmos A.A., Emikpe B.O., Abdel-Tawwab M. (2023 a). Effects of dietary supplementation with microbial phytase on the growth, bone minerals, anti-oxidant status, innate immunity and disease resistance of African catfish fed on high soybean meal based diets. J. Anim. Physiol. Anim. Nutr., 107: 733–745.
- Adeshina I., Akpoilih B.U., Udom B.F., Adeniyi O.V., Abdel Tawwab M. (2023 b). Interactive effects of dietary phosphorus and microbial phytase on growth performance, intestinal morphometry, and welfare of Nile tilapia (Oreochromis niloticus) fed on low fishmeal diets. Aquaculture, 563: 738995.
- Aguilar J.G., Sato H.H. (2018). Microbial proteases: production and application in obtaining protein hydrolysates. Food Res. Int., 103: 253–262.
- Ahmed S.R., Van Doan H., Davies S., Hassaan M.S., Goda A.M.A., El-Haroun E. (2025 a). Effect of selenium and nano-selenium applications on biological functions in aquaculture – a review. Ann. Anim. Sci., 25: 905–919.
- Ahmed S.R., Hoseinifar S.H., Van Doan H., Rossi W., Davies S., Goda A.M.A., El-Haroun E. (2025 b). Implication of fermented plant protein ingredients: a critical review of nutrition, physiology andgrowth: related aspects. Ann. Anim. Sci., DOI: 10.2478/aoas-2025-0010
- Ai Q., Mai K, Zhang W., Xu W., Tan B., Zhang C. (2007). Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicas. Comp. Biochem. Physiol. Part A: Molecul. Integrat. Physiol., 147: 502–508.
- Al Loman A., Ju L.K. (2017). Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects. Enz. Microb. Technol., 106: 35–47.
- Alam M.J., Howlider M.A.R., Pramanik M.A.H., Haque M.A. (2003). Effect of exogenous enzyme in diet on broiler performance. Int. J. Poult. Sci., 2: 168–173.
- Alemayehu T.A., Geremew A., Getahun A. (2018). The role of functional feed additives in Tilapia nutrition. Fisher Aquacult. J., 9: 1g–1g.
- Al-Harthi M.A., Attia Y.A., El-Shafe A.S., Elgandy M.F. (2020). Impact of phytase on improving the utilisation of pelleted broiler diets containing olive by products. Ital. J. Anim. Sci., 19: 310–318. Ali S. (2021). Efficacy of supplementation of phytase enzyme to broiler diets with or without di-calcium phosphate on performance and economic appraisal. Egypt Poult. Sci. J., 41: 317–331.
- Anadón A., Ares I., Martínez-Larrañaga M.R., Martínez M.A. (2019). Enzymes in feed and animal health. In: Nutraceuticals in Veterinary Medicine, Gupta R.C., Srivastava A., Lall R. (eds). Springer, pp. 303–313.
- Anwar A., Wan A.H., Omar S., El-Haroun E., Davies S.J. (2020). The potential of a solid-state fermentation supplement to augment white lupin (Lupinus albus) meal incorporation in diets for farmed common carp (Cyprinus carpio). Aquac. Rep., 17: 100348.
- Anwar A., Omar S., Mohammed S., El-Haroun E., Ragab S., Van Doan H. (2025). Common Carp (Cyprinus carpio) exposure to water-soluble fraction of crude oil (WSF): Evaluation of protective effects of dietary Rosmarinus officinalis leaf on water quality, growth performance, oxidative stress, stress hormones and heat shock proteins. Ann. Anim. Sci., 25: 1035–1044.
- Awad A., Mohammady E.Y., Souady M.R., Rabetimarghezar N., El-Haroun E.R., Hassaan M.S. (2024). Growth and physiological response of Nile tilapia (Oreochromis niloticus) fed a fermented mixture of plant protein sources. Anim. Feed Sci. Technol., 315: 116034.
- Awad G.E.A., Ghanem A.F., Abdel Wahab W.A., Wahba M.I. (2020). Functionalized ĸ-carrageenan/hyperbranched poly(amidoamine) for protease immobilization: thermodynamics and stability studies. Int. J. Biol. Macromol., 148: 1140e55.
- Azcuy R.L., Casaretto M.E., Márquez L., Hernández A.J., Morales G.A. (2024). Evaluation of phytase impact on in vitro protein and phosphorus bioaccessibility of two lupin species for rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 2697729.
- Bala P., Mustafa M.d.G., Mandal S.C. (2020). Improved growth and nutritional quality of pangas catfish, Pangasius hypophthalmus (Sauvage, 1878) by enzyme supplementation. Aquacult. Stud., 20: 133–142.
- Baruah K., Sahu N.P., Pal A.K., Debnath D. (2004). Dietary phytase: an ideal approach for a cost effective and low polluting aqua feed. NAGA World. Fish. Centre Quarterly, 27: 15–19.
- Biswas A.K., Kaku H., Ji S.C., Seoka M., Takii K. (2007). Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture, 267: 284–291.
- Bowyer P., El-Haroun E.R., Davies S.J. (2020). Benefits of a commercial solid-state fermentation (SSF) product on growth performance, feed efficiency and gut morphology of juvenile Nile tilapia (Oreochromis niloticus) fed different UK lupin meal cultivars. Aquaculture, 523: 735192.
- Buchholz I., Nagel F., Klein A., Wagh P.R., Mahajan U.M., Greinacher A., Lerch M.M., Mayerle J., Delcea M. (2020). The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. Biochim. Biophys. Acta Proteins. Proteom., 1868: 140281.
- Castillo S., Gatlin D.M. (2015). Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture, 435: 286–292.
- Chen K., Gatlin D.M. (2024). Optimal dietary supplementation of phytase for red drum (Sciaenops ocellatus) based on growth and mineral utilization. Aquaculture, 581: 740383.
- Chen S., Maulu S., Wang J., Xie X., Liang X., Wang H., Wang J., Xue M. (2024). The application of protease in aquaculture: Prospects for enhancing the aquafeed industry: Review Article. Anim. Nutr., 16: 105–121.
- Chowdhury M.A.K., Zhu J., Cai C., Ye Y., He J. (2018). Dietary pro-tease modulates nutrient retention efficiency and hepatopancreatic protease activity in juvenile Chinese mitten crab Eriocheir sinensis. Aquacult. Nutr., 24: 911–917.
- Chuchird N., Rairat T., Keetanon A., Seguin D., Chotikachinda R., Manomaitis L., Kanjanamayoon C. (2023). Effect of feed enzymes and functional immunostimulants supplementation on growth performance and overall health of postlarvae and juvenile Pacific white shrimp, Penaeus vannamei, fed soybean-based diets. J. World Aquacult. Soc., 12939: 1–14.
- Company R., Astola A., Pendón C., Valdivia M.M., Pérez-Sánchez J. (2001). Somatotropic regulation of fish growth and adiposity: Growth hormone (GH) and somatolactin (SL) relationship. Comp. Biochem. Physiol., 130: 435–445.
- Cowieson A.J., Ruckebusch J.P., Sorbara J.O.B., Wilson J.W., Guggenbuhl P., Roos F.F. (2017). A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim. Feed Sci. Technol., 225: 182–194.
- Dalsgaard J., Verlhac V., Hjermitslev N.H., Ekmann K.S., Fischer M., Klausen M., Pedersen P.B. (2012). Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein. Anim. Feed Sci. Technol., 171: 181–191.
- Danwitz A., van Bussel C.G.J., Klatt S.F., Schulz C. (2016). Dietary phytase supplementation in rapeseed protein based diets influences growth performance, digestibility and nutrient utilization in turbot (Psetta maxima L.). Aquaculture, 450: 405–411.
- Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.
- Dawood M., Mohsen M., El-dakar A., Abdelraouf E., Moustafa E., Ahmed H. (2019). Effectiveness of exogenous digestive enzymes supplementation on the performance of rabbitfish (Siganus rivulatus). Slov. Vet. Res., 56: 409–419.
- Dechavez R.B., Serrano A.E. Jr (2012). Evaluation of phytases of three Bacillus spp. in the diet of sex-reversed Oreochromis mossambicus fingerlings on growth, feed efficiency and mineral deposition. Ann. Biol. Res., 3: 4584–4592.
- Devi P.A., Padmavathy P., Aanand S., Aruljothi K. (2017). Review on water quality parameters in freshwater cage fish culture. Int. J. Appl. Res., 3: 114–120.
- Diab A.M., Eldeghaidy E.E., Abo-Raya M.H., Shukry M., Abdeen A., Ibrahim S.F., Fericean L., Abdo M., Khalafalla M.M. (2023). Assessment of growth-related parameters, immune-biochemical profile, and expression of selected genes of red tilapia fed with roselle calyces (Hibiscus sabdariffa) extract. Fishes, 8: 172.
- Dias J., Santigosa E. (2023). Maximizing performance and phosphorus utilization of warm water fish through phytase supplementation. Aquaculture, 569.
- El-Ashry M.A., Radwan A.A., El-Sayed A.I.M., Soltan M.A., Mehrim A.I. (2021). Effect of dietary xylanase on growth performance, digestive enzymes and physiological responses of Nile tilapia, Oreochromis niloticus fingerlings fed plant-based diets. Anim. Biotechnol., 59: 71–80.
- Elhalis H., See X.Y., Osen R., Chin X.H., Chow Y. (2023). Significance of fermentation in plant-based meat analogs: a critical review of nutrition, and safety-related aspects. Foods, 12: 3222.
- El-Haroun E.R., Azevedo P.A., Bureau D.P. (2009). High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow trout Oncorhynchus mykiss (Walbaum, 1972). Aquaculture, 290: 269–274.
- El-Husseiny O.M., Hassana M.I., El-Haroun E.R., Suloma A. (2018). Utilization of poultry by-product meal supplemented with L-ly-sine as fish meal replacer in the diet of African catfish Clarias gariepinus (Burchell, 1822). J. Appl. Aquac., 30: 63–75.
- Encarnação P. (2016). Functional feed additives in aquaculture feeds. In: Aquafeed formulation, Nates S.F. (ed.). Academic Press, pp. 217–237.
- Engin K., Koyuncu C.E. (2023). The recent advances to increase nutrient utilization of dietary plant proteins by enzyme supplementation and fermentation in rainbow trout (Oncorhynchus mykiss): a review. J. Agricult. Sci. (Tarim Bilimleri Dergisi), DOI: 10.15832/ankutbd.1192888
- Farooq K., Anwar Z., Khalid W., Hasan S., Afzal F., Zafar M., Ali U., Alghamdi O., Al-Farga A., Al-Maaqar S.M. (2024). Optimization and detergent compatibility of protease produced from Aspergillus oryzae by utilizing agro wastes. ACS Omega, 9.
- Feng L., Feng L., Jiang W.D., Liu Y., Zhang L., Kuang S.Y., Ren H.M., Jin X.W., Li S.W., Mi H.F., Zhou X.Q., Wu P. (2023). The beneficial effects of exogenous protease K originated from Parengyodontium album on growth performance of grass carp (Ctenopharyngodon idella) in relation to the enhanced intestinal digestion and absorption capacities. Aquaculture, 563: 738929.
- Fontes T.V., Batista de Oliveira K.R., Almeida I.L.G., Orlando T.M., Rodrigues P.B., Vicente da Costa D., Vieira R.P. (2019). Digestibility of insect meals for Nile tilapia fingerlings. Animals, 9: 181.
- Goda A.A.S., Srour T.M., Omar E., Mansour A.T., Baromh M.Z., Mohamed S.A., Davies S.J., El-Haroun E.R. (2019). Appraisal of a high protein distiller’s dried grain (DDG) in diets for European sea bass, Dicentrarchus labrax fingerlings on growth performance, haematological status and related gut histology. Aquacult. Nutr., 25: 808–816.
- Goda A.M.A.S., Sherine R.A., Nazmi H.M., Ahmad M.A., Mostafa K.S.T., Susan H.F., Baromh Z.M., El-Haroun E.R., Simon D. (2020 a). Assessment of a high protein distillers dried grain (HPDDG) augmented with phytase in diets for European sea bass, Dicentrarchus labrax fingerlings on growth performance, haematological status, immune response and related gut and liver histology. Aquaculture, 529: 735617.
- Goda A.M.A.S., Ahmed S.R., Nazmi H.M., Baromh M.Z., Kevin F., Waldemar R.J., Simon D., El-Haroun E.R. (2020 b). Partial replacement of dietary soybean meal by high-protein distiller’s dried grains (HPDDG) supplemented with protease enzyme for European sea bass, Dicentrarchus labrax fingerlings. Aquacult. Nutr., 26: 842–852.
- Gopalraaj J., Velayudhannair K., Arockiasamy J.P., Radhakrishnan D.K. (2023). The effect of dietary supplementation of proteases on growth, digestive enzymes, oxidative stress, and intestinal morphology in fishes – A review. Aquacult. Int., https://doi.org/10.1007/s10499-023-01191-8
- Hasan M.d.T., Kim H.J., Hur S.W., Jeong S.M., Kim K.W., Lee S. (2023). Dietary exogenous α-amylase modulates the nutrient digestibility, digestive enzyme activity, growth-related gene expression, and diet degradation rate of olive flounder (Paralichthys olivaceus). J. Microb. Biotechnol., 33: 1390–1401.
- Hassaan M., Davies S., Soltan M.A., Mohammady E.Y., Elashry M.A., El-Haroun E.R. (2018). Growth and physiological responses of Nile tilapia, Oreochromis niloticus to dietary fermented sunflower meal with Saccharomyces cerevisiae and Bacillus subtilis. Aqua-culture, 495: 592–601.
- Hassaan M.S., El-Sayed A.I.M., Soltan M.A., Iraqi M.M., Goda A.M., Davies S., El-Haroun E.R., Ramadan H.A. (2019). Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture, 503: 282–292.
- Hassaan M.S., Mohammady E.Y., Adnan A.M., Abd Elnabi H.E., Ayman M.F., Soltan M.A., El-Haroun E.R. (2020). Effect of dietary protease at different levels of malic acid on growth, digestive enzymes and haemato-immunological responses of Nile tilapia, fed fish meal free diets. Aquaculture, 522: 735124.
- Hassaan M.S., Mohammady E.Y., Soaudy M.R., Elashry M.A., Moustafa M.M., Wassel M.A., El-Haroun E.R., Elsaied H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim. Feed Sci. Technol., 275P: 114892.
- He M., Li X., Poolsawat L., Guo Z., Yao W., Zhang C. (2020). Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquacult. Nutr., 26: 1058–71.
- Hossain M.K.N., Ishak S.D., Iehata S., Noordiyana M.N., Kader M.A., Abol-Munafi A.B. (2024). Growth performance, fatty acid profile, gut, and muscle histo-morphology of Malaysian mahseer, Tor tambroides post larvae fed short-term host associated probiotics. Aquacult. Fish., 9: 35–45.
- Hu J., Ran C., He S., Cao Y., Yao B., Ye Y., Zhang X., Zhou Z. (2016). Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion. Brit. J. Nutr., 115: 1958–1966.
- Huan D., Li X., Chowdhury M.A.K., Yang H., Liang G., Leng X. (2018). Organic acid salts, protease and their combination in fish meal-free diets improved growth, nutrient retention and digestibility of tilapia (Oreochromis niloticus × O. aureus). Aquacult. Nutr., 24: 1813–1821.
- Huang Z., Li Z., Xu A., Zheng D., Ye Y., Wang Z. (2020). Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non-specific immunity of the Japanese seabass, Lateolabrax japonicus. Aqua-cult. Nutr., 26: 306–315.
- Huo H.J., Chen S.N., Li L., Nie P. (2019). Functional characterization of IL-10 and its receptor subunits in a perciform fish, the mandarin fish, Siniperca chuatsi. Dev. Comp. Immunol., 97: 64–75.
- Hussain S.M., Hanif S., Sharif A., Bashir F., Iqbal H.M.N. (2021). Unrevealing the sources and catalytic functions of phytase with multipurpose characteristics. Catalysis Lett., 152: 1358–1371.
- Hussain S.M., Arsalan M.Z.H., Ahmad N., Ahmad B., Tabassum S., Ali B. (2024). Dietary supplementation of citric acid and phytase in plant-based diets improves mineral bioavailability in common carp, Cyprinus carpio. Pakistan. J. Zool., 1–9.
- Islam M., Huang Y., Islam S., Fan B., Tong L., Wang F. (2022). Influence of the degree of hydrolysis on functional properties and antioxidant activity of enzymatic soybean protein hydrolysates. Molecules, 27: 6110.
- Jastaniah S.D., Mansour A.A., Al-Tarawni A.H., El-Haroun E., Munir M.B., Sultan Ayesh M. Saghir, Kari Z.A., Tellez-Isaías G., Bottje W.G., AL-Farga A., Eissa E.H. (2024). The effects of nano-curcumin on growth performance, feed utilization, blood biochemistry, disease resistance, and gene expression in European seabass (Dicentrarchus labrax) fingerlings. Aquacult. Rep., 36: 102034.
- Jiang T.T., Feng L., Liu Y., Jiang W.D., Jiang J., Li S.H., Zhou X.Q. (2014). Effects of exogenous xylanase supplementation in plant protein-enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr., 20: 632–645.
- Kemigabo C., Jere L.W., Sikawa D., Masembe C., Kang’ombe J., Abdel-Tawwab M. (2019). Growth response of African catfish, Clarias gariepinus (B.), larvae and fingerlings fed protease-incorporated diets. J. Appl. Ichthyol., 35: 480–487.
- Khan S.H., Sardar R., Siddique B. (2006). Influence of enzymes on performance of broilers fed sunflower-corn based diets. Pakist. Veterin. J., 26: 109–114.
- Kuebutornye F.K.A., Tang J., Cai J., Wang Y.Z., Abarike E.D., Lu Y., Li Y., Afriyie G. (2020). In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture, https://doi.org/10.1016/j.aquaculture.2020.735440
- Kumar S., Chakravarty S. (2018). Amylases. In: Enzymes in Human and Animal Nutrition, Nunes C.S., Kumar V. (eds). Elsevier. Amsterdam, The Netherlands, pp. 163–180.
- Kuz’Mina V.V. (1996). Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture, 10: 25–37.
- Lee S.A., Lupatsch I., Gomes G.A., Bedford M.R. (2020). An advanced Escherichia coli phytase improves performance and retention of phosphorus and nitrogen in rainbow trout (Oncorhynchus mykiss) fed low phosphorus plant-based diets, at 11 °C and 15 °C. Aquaculture, 516: 734549.
- Leenhouwers J.I., Ortega R.C., Verreth J.A.J., Schrama J.W. (2007). Digesta characteristics in relation to nutrient digestibility and mineral absorption in Nile tilapia (Oreochromis niloticus L.) fed cereal grains of increasing viscosity. Aquaculture, 273: 556–565.
- Lemos D., Tacon A.G.J. (2017). Use of phytases in fish and shrimp feeds: a review. Rev. Aquac., 9: 266–282.
- Li X.Q., Chai X.Q., Liu D.Y., Chowdhury M.A.K., Leng X.J. (2016). Effects of temperature and feed processing on protease activity and dietary protease on growths of white shrimp, Litopenaeus vannamei, and tilapia, Oreochromis niloticus × O. aureus. Aqua-cult. Nutr., 22: 1283–1292.
- Liang Q., Yuan M., Xu L., Lio E., Zhang F., Mou H., Secundo F. (2022). Application of enzymes as a feed additive in aquaculture. Marine Life Sci. Technol., 4: 208–221.
- Lin S., Mai K., Tan B. (2007). Effects of exogenous enzyme supplementation mentation in diets on growth and feed utilization in tilapia, Oreochromis niloticus × O. aureus. Aquac. Res., 38: 1645–1653.
- Liu F., Li J., Ni H., Azad M A.K., Mo K., Yin Y. (2023 a). The effects of phytase and non-starch polysaccharide hydrolyzing enzymes on trace element deposition, intestinal morphology, and cecal microbiota of growing–finishing pigs. Animals: An Open Access Journal from MDPI, 13: 549.
- Liu H., Pan L., Shen J., Tan B., Dong X., Yang Q., Chi S., Zhang S. (2023 b). Effects of carbohydrase supplementation on growth performance, intestinal digestive enzymes and flora, glucose metabolism enzymes, and glut2 gene expression of hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus) fed different CHO/L ratio diets. Metabolites, 13: 98.
- Liu W., Wu J.P., Li Z., Duan Z.Y., Wen H. (2018). Effects of dietary coated protease on growth performance, feed utilization, nutrient apparent digestibility, intestinal and hepatopancreas structure in juvenile gibel carp (Carassius auratus gibelio). Aquacult. Nutr., 24: 47–55.
- LP Information Inc. (2022). Global animal feed enzymes market growth 2022–2028. Market Research.com. https://www.marketresearch.com/LP-Information-Inc-v4134/Global-Animal-Feed-Enzymes-Growth-30499852/. Accessed Jan 2022.
- Luo J., Li Y., Jin M., Zhu T., Li C., Zhou Q. (2020). Effects of dietary exogenous xylanase supplementation on growth performance, intestinal health, and carbohydrate metabolism of juvenile large yellow croaker, Larimichthys crocea. Fish. Physiol. Biochem., 46: 1093–1110.
- Maas R.M., Verdegem M.C.J., Stevens T.L., Schrama J.W. (2020). Effect of exogenous enzymes (phytase and xylanase) supplementation on nutrient digestibility and growth performance of Nile tilapia (Oreochromis niloticus) fed different quality diets. Aqua-culture, 529: 735723.
- Maas R.M., Verdegem M.C.J., Lee C.N., Schrama J.W. (2021). Effects and interactions between phytase, xylanase and β-glucanase on growth performance and nutrient digestibility in Nile tilapia. Anim. Feed Sci. Technol., 271: 114767.
- Magalhães R., Lopes T., Martins N., Díaz-Rosales P., Couto A., Pousão-Ferreira P., Oliva-Teles A., Peres H. (2016). Carbohydrases supplementation increased nutrient utilization in white seabream (Diplodus sargus) juveniles fed high soybean meal diets. Aquaculture, doi: 10.1016/j.aquaculture.2016.05.019
- Martínez-Álvarez R., Morales A., Sanz A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Rev. Fish. Biol. Fish., https://doi.org/10.1007/s11160-005-7846-4.
- Maryam, Shah S.Z.H., Fatima M., Hussain S.M., Nadeem H., Hussain M. (2022). The effectiveness of protease supplemented poultry by-product meal-based diet on growth, nutrient digestibility and digestive enzyme activities of rohu (Labeo rohita). Aquacult. Res., 53: 3841–3852.
- Maryam, Shah S.Z.H., Fatima M., Nadeem H., Ashraf S., Hussain M. (2024). Roles of dietary supplementation of exogenous protease in low fishmeal aquafeed − a mini review. Ann. Anim. Sci., 24: 27–39.
- Menezes-Blackburn D., Greiner R. (2015). Enzymes used in animal feed: Leading technologies and forthcoming developments. In: Functional Polymers in Food Science, Cirillo G., Spizzirri U.G., Lemma F. (eds). Scrivener Publishing, pp. 47–73.
- Mohammady E.Y., Elashry M.A., Ibrahim M.S., Elarian M., Salem S.M.R., El Haroun E.R., Hassaan M.S. (2024). Nano iron versus bulk iron forms as functional feed additives: growth, body indices, hematological assay, plasma metabolites, immune, anti oxidative ability, and intestinal morphometric measurements of Nile tilapia, Oreochromis niloticus. Biol. Trace Elem. Res., 202: 787–799.
- Monier M.N. (2020). Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiol. Biochem., 46: 713–723.
- Moustafa Y.T.A., Amer T.N.A. (2017). Toward more environmentally friendly aquaculture: effect of dietary exogenous enzymes (Natuzyme®) on nitrogen and phosphorus retention and excretion in Nile tilapia (Oreochromis niloticus). Proc. 1st International Conference (Central Laboratory for Aquaculture Research in Cooperation with Worldfish), 2: 478–501.
- Mutch D.M., Wahl W., Williamson G. (2005). Nutrigenomics and nutrigenetics: The emerging faces of nutrition. FASEB J., 19: 1602–1616.
- Nadeem H., Shah S.Z.H., Fatima M., Maryam, Shahzad M.M. (2022). Effects of exogenous xylanase supplementation in plant-based diets on growth performance, nutrient digestibility and digestive enzyme activities of juvenile mori (Cirrhinus mrigala). Anim. Feed Sci. Technol., 291: 115391.
- Negm A.E., Abo-Raya M.H., Gabr A.M., Baloza S.H., El-Nokrashy A., Prince A., Arana D., Wan Y., Abdelazeem S., Albadrani G.M., Al-Ghadi M.Q., Abdeen A., Shukry M., El-Sayed Khalafallah M.M. (2024). Effects of phytase enzyme supplementation on growth performance, intestinal morphology and metabolism in Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr., 13939: 1–18.
- Nehad M., Eid A.E., Ali B.A., Ali W., Enany M.E., Abd El-Naby A.S. (2019). Effect of phytase and citric acid on growth performance, feed utilization and its antibacterial activity against fish pathogens of Nile tilapia fingerlings. Egypt J. Aquacult., 9: 35–53.
- Neto Y.A.H., Rosa J.C., Cabral H. (2019). Peptides with antioxidant properties identified from casein, whey, and egg albumin hydrolysates generated by two novel fungal proteases. Prep. Biochem. Biotechnol., 49: 639–648.
- Özcan F., Tasbozan O. (2022). The effects of dietary protease enzyme on growth performances and digestive enzyme activities of gilt head sea bream (Sparus aurata). Anim. Nutr. Feed Technol., 22: 95–106.
- Pérez-Sánchez J., Calduch-Giner J.A., Mingarro M., de Celis S.V.R., Gómez-Requeni P., Saera-Vila A., Valdivia M.M. (2002). Overview of fish growth hormone family. New insights in genomic organization and heterogeneity of growth hormone receptors. Fish Physiol. Biochem., 27: 243–258.
- Prachom N., Yuangsoi B., Pumnuan J., Ashour M., Davies S.J., El-Haroun E. (2023). Effects of substituting the two-spotted cricket (Gryllus bimaculatus) meal for fish meal on growth performances and digestibility of striped snakehead (Channa striata) Juveniles. Life, 13: 594.
- Putnuan P., Jintasataporn Srinoy O.C. (2020). In vitro digestibility of fishmeal reduction diet in combination with protease enzyme by Nile tilapia (Oreochromis niloticus) digestive enzyme. Msu Editorial Board for Proceeding, 44: 1–7.
- Qiu X., Davis D.A. (2017). Effects of dietary carbohydrase supplementation on performance and apparent digestibility coefficients in Pacific white shrimp, Litopenaeus vannamei. J. World Aquac. Soc., 48: 313–319.
- Rachmawati D., Istiyanto S., Maizirwan M. (2017). Effect of phytase on growth performance, diet utilization efficiency and nutrient digestibility in fingerlings of Chanos chanos (Forsskal 1775). Philippine J. Sci., 146: 237–245.
- Ragaa N.M., Abu Elala N.M., Kamal A.M., Kamel N.F. (2017). Effect of a serine-protease on performance parameters and protein digestibility of cultured Oreochromis niloticus fed diets with different protein levels. Pak. J. Nutr., 16: 148–154.
- Ragab S., Hoseinifar S.H., Van Doan H., El-Haroun E. (2023). Evaluation of distiller’s dried grains with solubles in aquafeeds – a review. Ann. Anim. Sci., 24: 65–75.
- Rehemujiang H., Yusuf H.A., Ma T., Diao Q., Kong L., Kang L., Tu Y. (2023). Fermented cottonseed and rapeseed meals outperform soybean meal in improving performance, rumen fermentation, and bacterial composition in Hu sheep. Front. Microbiol., 14: 1119887.
- Rizwanuddin S., Kumar V., Naik B. (2023). Microbial phytase: their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. J. Agricult. Food Res., 12: 100559.
- Rodrigues E.J.D., Ito P.I., Ribeiro L.F.M., de Carvalho P.L.P.F., Xavier W.d.S., Guimarães M.G., Junior A.C,F., Pezzato L.E., Barros M.M. (2023). Phytase supplementation under commercially intensive rearing conditions: impacts on Nile tilapia growth performance and nutrient digestibility. Animals, 13: 136.
- Saleh E.S.E., Tawfeek S.S., Abdel-Fadeel A.A.A., Abdel-Daim A.S.A., Abdel-Razik A.H., Youssef I.M.I. (2022). Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr., 106: 419–428.
- Samtiya M., Aluko R.E., Dhewa T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod. Proc. Nutr., 2: 6.
- Sánchez-Alcade M.C., García-Ulloa M., Montaño E.M., Castro-Martínez C., Álvarez-Ruíz P., Rodríguez González H. (2023). Use of enzyme mixtures in diets based on animal and plant ingredients for Litopenaeus vannamei: effect on digestibility, growth, and enzyme activity. Turkish J. Fisher Aquat. Sci., 23: 21999.
- Sarfraz Q., Hussain S.M., Sharif A., Selamoglu Z., Bashir F., Ahsan S. (2020). Potential of phytase supplemented Moringa oleifera leaf mealbased diet on mineral digestibility of Oreochromis niloticus fingerlings. J. Surv. Fish. Sci., 6: 65–77.
- Shah S.Z.H., Fatima M., Afzal M., Bilal M. (2021). Interactive effect of citric acid, phytase and chelated mineral on growth performance, nutrient digestibility and whole-body composition of Labeo rohita fingerlings. Aquac. Res., 52: 842–858.
- Sharawy Z.Z., Ashour M., Eman A., Ola A., Mohamed H., Hany N., Mahmoud K., Abdelwahab K., Mohamed H., Waldemar R., Ehab El-Haroun., Goda A.M.S-A. (2020). Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquacult. Res., 1–13.
- Shekarabi S.P.H., Ghodrati M., Masouleh A.S., Roudbaraki A.F. (2022). The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii). Ann. Anim. Sci., 22: 1063–1072.
- Sherine R.A., Hassaan M., Fitzsimmons K., El-Haroun E. (2023). Chapter 8. Alternative protein sources for sustainable tilapia farming. Novel approaches toward sustainable tilapia aquaculture. Appl. Environ. Sci. Eng. Sust. Futur., https://doi.org/10.1007/978-3-031-38321-2_8
- Sherine R., Seyed H.H., Hien V.D., El-Haroun E. (2024). Evaluation of distillers dried grains with solubles in aquafeeds – a review. Ann. Anim. Sci., 24: 65–75.
- Shi X., Luo Z., Chen F., Wei C.C., Wu K., Zhu X.M., Liu Z.X. (2017). Effect of fish meal replacement by Chlorella meal with dietary cellulase addition on growth performance, digestive enzymatic activities, histology and myogenic genes’ expression for crucian carp Carassius auratus. Aquac. Res., 48: 3244–3256.
- Shi Z., Li X.Q., Chowdhury M.A.K., Chen J.N., Leng X.J. (2016). Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, 460: 37–44.
- Soltan N.M., Soaudy M.R., Abdella M.M., Hassaan M.S. (2023). Partial dietary fishmeal replacement with mixture of plant protein sources supplemented with exogenous enzymes modify growth performance, digestibility, intestinal morphology, haemato-biochemical and immune responses for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol., 299: 115642.
- Song H.L., Tan B.P., Chi S.Y., Liu Y., Chowdhury M.A.K., Dong X.H. (2017). The effects of a dietary protease-complex on performance, digestive and immune enzyme activity, and disease resistance of Litopenaeus vannamei fed high plant protein diets. Aquac. Res., 48: 2550–2560.
- Sriket C. (2014). Proteases in fish and shellfish: Role on muscle softening and prevention. Int. Food. Res. J., 21: 433.
- Sureshkumar S., Song J., Sampath V., Kim I. (2023). Exogenous enzymes as zootechnical additives in monogastric animal feed: a review. Agriculture, 13: 2195.
- Terrey D.E., Braidi D.A., Serwata R. (2023). Effect of a microbial phytase on the growth performance, digestibility and retention in a high plant meal inclusion diet for Atlantic salmon (Salmo salar). Aquacult. Int., https://doi.org/10.1007/s10499-023-01295-1
- Uzzau S., Bossi L., Figueroa-Bossi N. (2002). Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol. Microbiol., 46: 147–156.
- Velázquez-De Lucio B.S., Hernández-Domínguez E.M., Villa-García M., Díaz-Godínez G., Mandujano-Gonzalez V., Mendoza-Mendoza B., Álvarez-Cervantes J. (2021). Exogenous enzymes as zoo-technical additives in animal feed: a review. Catalysts, 11: 851.
- Wang L., Zhou H., He R., Xu W., Mai K., He G. (2016). Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture, 464: 87–94.
- Wenxiang Y., Xiaoqin L., Kabir Chowdhury M.A., Jing W., Leng X. (2018). Dietary protease, carbohydrase and micro-encapsulated organic acid salts individually or in-combination improved growth, feed utilization and intestinal histology of Pacific white shrimp. Aquaculture, 503: 88–95.
- Wu J.J., Liu W., Jiang M., Zhou Y., Wang W.M., Wen H., Liu H. (2020). Beneficial effects of dietary exogenous protease on the growth, intestinal health and immunity of GIFT (Oreochromis niloticus) fed plant-based diets. Aquac. Nutr., 26: 1822–1834.
- Wu J., Yu T., Wang Q., Zhang C., Fu D., Liu W., Jiang M., Xu L., Zhou Y., Wu J. (2024). Effects of dietary microbial protease on growth performance, nutrient apparent digestibility, hepatic anti-oxidant capacity, protease activities and intestinal microflora in juvenile genetically improved farmed tilapia, Oreochromis niloticus. Aquacult. Rep., 34: 101894.
- Yigit N.O., Bahadir Koca S., Didinen B.I., Diler I. (2018). Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss, Walbaum) fed soybean meal-based diets. J. Appl. Anim. Res., 46: 29–32.
- Yuangsoi B., Klahan R., Charoenwattanasak S., Lin S.M. (2018). Effects of supplementation of pineapple waste extract in diet of Nile tilapia (Oreochromis niloticus) on growth, feed utilization, and nitrogen excretion. J. Appl. Aquac., 30: 227–237.
- Zamini A., Kanani H., Esmaeili A., Ramezani S., Zoriezahra S. (2014). Effects of two dietary exogenous multi-enzyme supplementation, Natuzyme® and beta-mannanase (Hemicell®), on growth and blood parameters of Caspian salmon (Salmo trutta caspius). Comp. Clin. Pathol., 23: 187–192.
- Zarghi H., Golian A., Hassanabadi A., Khaligh F. (2022). Effect of zinc and phytase supplementation on performance, immune response, digestibility and intestinal features in broilers fed a wheat-soybean meal diet. Italian. J. Anim. Sci., 21: 430–444.
- Zhang Q., Li F., Guo M. (2023 a). Growth performance, antioxidant and immunity capacity were significantly affected by feeding fermented soybean meal in juvenile coho salmon (Oncorhynchus kisutch). Animals, 13: 945.
- Zhang Q., Guo M., Li F., Qin M., Yang Q., Yu H., Xu J., Liu Y., Tong T. (2023 b). Evaluation of fermented soybean meal to replace a portion fish meal on growth performance, antioxidant capacity, immunity, and mTOR signaling pathway of coho salmon (Oncorhynchus kisutch). Aquacult. Nutr., 2558173.
- Zheng C.C., Wu J.W., Jin Z.H., Ye Z., Yang S., Sun Y., Fei H. (2020). Exogenous enzymes as functional additives in finfish aquaculture. Aquacult. Nutr., 26: 213–224.
- Zhou Y., Yuan X., Liang X.F., Fang L., Li J., Guo X.Z., Bai X.L., He S. (2013). Enhancement of growth and intestinal flora in grass carp: The effect of exogenous cellulase. Aquaculture, 416–417: 1–7.