Have a personal or library account? Click to login
Effect of Dietary Supplementation of Lactobacillus Sakei Subsp. Sakei on the Growth Performance, Immune Responses, and Antioxidant Defense of Rainbow Trout (Oncorhynchus Mykiss) Exposed to the Herbicide Butachlor* Cover

Effect of Dietary Supplementation of Lactobacillus Sakei Subsp. Sakei on the Growth Performance, Immune Responses, and Antioxidant Defense of Rainbow Trout (Oncorhynchus Mykiss) Exposed to the Herbicide Butachlor*

Open Access
|Jul 2025

References

  1. Ahmadifar E., Moghadam M.S., Dawood M.A., Hoseinifar S.H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) finger-lings. Fish Shellfish Immunol., 94: 916–923.
  2. Akbary P., Jahanbakhshi A. (2018). Growth yield, survival, carcass quality, haematological, biochemical parameters and innate immune responses in the grey mullet (Mugil cephalus Linneaus, 1758) fingerling induced by Immunogen® prebiotic. J. Appl. Anim. Res., 46: 10–16.
  3. Anbumani S., Mohankumar M.N. (2015). Cytogenotoxicity assessment of monocrotophos and butachlor at single and combined chronic exposures in the fish Catla catla (Hamilton). Environ. Sci. Pollut. Res., 22: 4964–4976.
  4. Anderson D.P., Siwicki A.K. (1995). Basic haematology and serology for fish health programs. In: Diseases in Asian Aquaculture II, Shariff M., Arthur J.R., Subasinghe R.P. (eds). FHS, Asian Fisheries Society, Manila, Philippines, pp. 185–202.
  5. AOAC (2005). Official Methods of Analysis of Official Analytical Chemists International, 15th ed. Maryland U.S.A.
  6. Assan D., Kuebutornye F.K.A., Hlordzi V., Chen H., Mraz J., Mustapha U.F., Abarike E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 257: 110653.
  7. Banaee M., Impellitteri F., Evaz-Zadeh Samani H., Piccione G., Faggio C. (2022). Dietary Arthrospira platensis in rainbow trout (Oncorhynchus mykiss): a means to reduce threats caused by CdCl2 exposure? Toxics, 10: 731.
  8. Bandyopadhyay P., Das Mohapatra P.K. (2009). Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets on growth, nutritional quality and immunity of Catla catla (Ham.). Fish Physiol. Biochem., 35: 467–478.
  9. Boshra H., Li J., Sunyer J.O. (2006). Recent advances on the complement system of teleost fish. Fish Shellfish Immunol., 20: 239–262.
  10. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem., 72: 248–254.
  11. Caipang C.M.A., Lazado C.C., Brinchmann M.F., Rombout J.H., Kiron V. (2011). Differential expression of immune and stress genes in the skin of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. Part D Genom. Proteom., 6: 158–162.
  12. Couto N., Malys N., Gaskell S.J., Barber J. )2013(. Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J. Proteome Res., 12: 2885–2894.
  13. Dang Y., Sun Y., Zhou Y., Men X., Wang B., Li B., Ren Y. (2022). Effects of probiotics on growth, the toll-like receptor mediated immune response and susceptibility to Aeromonas salmonicida infection in rainbow trout Oncorhynchus mykiss. Aquaculture, 561: 738668.
  14. De B.C., Meena D.K., Behera B.K., Das P., Das Mohapatra P.K., Sharma A.P. (2014). Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol. Biochem., 40: 921–971.
  15. DeWeerdt S. (2020). Can aquaculture overcome its sustainability challenges? Nature, 588: S60.
  16. Du Y., Yi M., Xiao P., Meng L., Li X., Sun G., Liu Y. )2015(. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish Shellfish Immunol., 44: 307–315.
  17. Faggiano L., de Zwart D., García-Berthou E., Lek S., Gevrey M., (2010). Patterning ecological risk of pesticide contamination at the river basin scale. Sci. Total Environ., 408: 2319–2326.
  18. Finney D. (1971). Probit analysis; a statistical treatment of the sigmoid response curve. Cambridge, 256 pp.
  19. Giannenas I., Triantafillou E., Stavrakakis S., Margaroni M., Mavridis S., Steiner T., Karagouni E. (2012). Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss). Aquaculture, 350: 26–32.
  20. Gilliom R.J. (2007). Pesticides in U.S. streams and groundwater. Environ. Sci. Technol., 41: 3408–3414.
  21. Gobi N., Malaikozhundan B., Sekar V., Shanthi S., Vaseeharan B., Jayakumar R., Nazar A.K. (2016). GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the pro-biotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus. Fish Shellfish Immunol., 52: 230–238.
  22. Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196: 143–151.
  23. Hajirezaee S., Khanjani M.H. (2023). Rosmarinic acid alone or in combination with Lactobacillus rhamnosus ameliorated resistance to ammonia stress in the rainbow trout, Oncorhynchus mykiss: growth, immunity, antioxidant defense and liver functions. Ann. Anim. Sci., 23: 819–831.
  24. Harikrishnan R., Balasundaram C., Heo M.S. (2010). Lactobacillus sakei BK19 enriched diet enhances the immunity status and disease resistance to streptococcosis infection in kelp grouper, Epinephelus bruneus. Fish Shellfish Immunol., 29: 1037–1043.
  25. Hedayati A., Gerami M.H. (2014). Acute toxicity of butachlor to Caspian kutum (Rutilus frisii Kutum Kamensky, 1991). J. Environ. Treat. Tech., 2: 155–157.
  26. Hindu S.V., Thanigaivel S., Vijayakumar S., Chandrasekaran N., Mukherjee A., Thomas J. (2018). Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas hydrophila infection. Fish Shellfish Immunol., 73: 112–120.
  27. Hoseini S.M., Gharavi B., Mirghaed A.T., Hoseinifar S.H., Van Doan H. (2021). Effects of dietary phytol supplementation on growth performance, immunological parameters, antioxidant and stress responses to ammonia exposure in common carp, Cyprinus carpio (Linnaeus, 1758). Aquaculture, 545: 737151.
  28. Hoseinifar S.H., Zoheiri F., Lazado C.C. (2016). Dietary phytoimmunostimulant Persian hogweed (Heracleum persicum) has more remarkable impacts on skin mucus than on serum in common carp (Cyprinus carpio). Fish Shellfish Immunol., 59: 77–82.
  29. Jalil A.T., Abdelbasset W.K., Shichiyakh R.A., Widjaja G., Altimari U.S., Aravindhan S., Thijail H.A., Mustafa Y.F., Naserabad S.S. (2022(. Protective effects of summer savory (Satureja hortensis) oil on growth, biochemical, and immune system performance of common carp exposed to pretilachlor herbicide. Vet. Res. Commun., 46: 1063–1074.
  30. Jasim S.A., Hafsan H., Saleem H. D., Kandeel M., Khudhair F., Yasin G., Dadras M. (2022). The synergistic effects of the probiotic (Lactobacillus fermentum) and cinnamon, Cinnamomum sp. powder on growth performance, intestinal microbiota, immunity, anti-oxidant defence and resistance to Yersinia ruckeri infection in the rainbow trout (Oncorhynchus mykiss) under high rearing density. Aquac. Res., 53: 5957–5970.
  31. Kalbassi M.R., Abdollahzadeh E., Salari-Joo H. (2013). A review on aquaculture development in Iran. Ecopersia, 1: 159–178.
  32. Kaushik S., Streibig J.C., Cedergreen N. (2006). Activities of mixtures of soil-applied herbicides with different molecular targets. Pest Manag. Sci: Formerly Pesticide Sci., 62: 1092–1097.
  33. Knobloch S., Skírnisdóttir S., Dubois M., Kolypczuk L., Leroi F., Leeper A., Passerini D., Marteinsson V.T. (2022). Impact of putative probiotics on growth, behaviour and the gut microbiome of farmed Arctic char (Salvelinus alpinus). Front. Microbiol., pp. 2544.
  34. Kole K., Islam M.R., Mrong C.E., Neepa N.N., Sultana N., Haque M.R., Mostakim G.M. (2022). Toxicological effect of sumithion pesticide on the hematological parameters and its recovery pattern using probiotic in Barbonymus gonionotus. Toxicol. Rep., 9: 230–237.
  35. Kumar R., Mukherjee S.C., Prasad K.P., Pal A.K. (2006). Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquac. Res., 37: 1215–1221.
  36. Kumar S., Prakash C., Chadha N.K., Gupta S.K., Jain K.K., Pandey P.K. (2019). Effects of dietary alginic acid on growth and haematoimmunological responses of Cirrhinus mrigala (Hamilton, 1822) fingerlings. Turk. J. Fish. Aquat. Sci., 19: 373–382.
  37. Kumar V., Swain H.S., Roy S., Das B.K., Upadhyay A., Ramteke M.H., Kumar V., Kole R.K., Banerjee H. (2022). Integrated bio-marker approach strongly explaining in vivo sub-lethal acute toxicity of butachlor on Labeo rohita. Comp. Biochem. Physiol. Part-C: Toxicol. Pharmacol, 261: 109427.
  38. Lazado C.C., Lund I., Pedersen P.B., Nguyen H.Q. (2015). Humoral and mucosal defense molecules rhythmically oscillate during a light–dark cycle in permit, Trachinotus falcatus. Fish Shellfish Immunol, 47: 902–912.
  39. Lee C., Cha J.H., Kim M.G., Shin J., Woo S.H., Kim S.H., Kim J.W., Ji S.C., Lee K.J. (2020). The effects of dietary Bacillus subtilis on immune response, hematological parameters, growth performance, and resistance of juvenile olive flounder (Paralichthys olivaceus) against Streptococcus iniae. J. World Aquac. Soc., 51: 551–562.
  40. Li J., Xu Y., Jin L., Li X. (2015). Effects of a probiotic mixture (Bacillus subtilis YB-1 and Bacillus cereus YB-2) on disease resistance and non-specific immunity of sea cucumber, Apostichopus japonicus (Selenka). Aquac. Res., 46: 3008–3019.
  41. Lin W.H., Yu B., Jang S.H., Tsen H.Y. (2007). Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe, 13: 107–113.
  42. Lu X., Peng D., Chen X., Wu F., Jiang M., Tian J., Wei K. )2020(. Effects of dietary protein levels on growth, muscle composition, digestive enzymes activities, hemolymph biochemical indices and ovary development of pre-adult red swamp crayfish (Procambarus clarkii). Aquac. Rep., 18 :100542.
  43. Lugert V., Thaller G., Tetens J., Schulz C., Krieter J. )2016(. A review on fish growth calculation: multiple functions in fish production and their specific application. Rev. Aquac., 8: 30–42.
  44. Madreseh S., Ghaisari H.R., Hosseinzadeh S. (2019). Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Probiotics Antimicrob. Proteins, 11: 1257–1263.
  45. Merrifield D.L., Bradley G., Baker R.T.M., Davies S.J. (2010). Pro-biotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr., 16: 496–503.
  46. Mikelsaar M., Zilmer M. (2009). Lactobacillus fermentum ME-3 –an antimicrobial and antioxidative probiotic. Microb. Ecol. Health Dis., 21: 1–27.
  47. Minh N.P. (2021). Application of Latilactobacillus curvatus into pickled shrimp (Litopenaeus vannamei). J. Pure Appl. Microbiol., 15.
  48. Mohammadian T., Nasirpour M., Tabandeh M.R., Mesbah M. (2019). Synbiotic effects of β-glucan, mannan oligosaccharide and Lacto-bacillus casei on growth performance, intestine enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, Cyprinus carpio: An experimental infection with Aeromonas hydrophila. Aquaculture, 511: 634197.
  49. Mohammadian T., Dezfuly Z.T., Motlagh R.G., Jangaran-Nejad A., Hosseini S.S., Khaj H., Alijani N. )2020(. Effect of encapsulated Lactobacillus bulgaricus on innate immune system and hemato-logical parameters in rainbow trout (Oncorhynchus mykiss), post-administration of Pb. Prob. Antimicrob. Proteins, 12: 375–388.
  50. Mohapatra S., Chakraborty T., Prusty A.K., Kumar K., Prasad K.P., Mohanta K.N. (2012). Fenvalerate induced stress mitigation by dietary supplementation of multispecies probiotic mixture in a tropical freshwater fish, Labeo rohita (Hamilton). Pestic. Biochem. Physiol., 104: 28–37.
  51. Naiel M.A., Abd El-hameed S.A., Arisha A.H., Negm S.S. (2022). Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish. Aquaculture, 556: 738249.
  52. Nicholson J.P., Wolmarans M.R., Park G.R. (2000). The role of albumin in critical illness. Br. J. Anaesth., 85: 599–610.
  53. OECD (Organisation for Economic Co-operation and Development) (1993). OECD Guidelines for Testing of Chemicals OECD, Organization for Economic, Paris.
  54. Pandiyan P., Balaraman D., Thirunavukkarasu R., George E.G.J., Subaramaniyan K., Manikkam S., Sadayappan B. )2013(. Probiotics in aquaculture. Drug Invent Day, 5: 55–59.
  55. Panigrahi A., Viswanath K., Satoh S. )2011(. Real-time quantification of the immune gene expression in rainbow trout fed different forms of probiotic bacteria Lactobacillus rhamnosus. Aquac. Res., 42: 906–917.
  56. Pauly D., Zeller D. (2017). Comments on FAOs State of World Fish-eries and Aquaculture (SOFIA 2016). Mar. Policy, 77: 176–181.
  57. Prabawati E., Hu S.Y., Chiu S.T., Balantyne R., Risjani Y., Liu C.H. (2022). A synbiotic containing prebiotic prepared from a byproduct of king oyster mushroom, Pleurotus eryngii and probiotic, Lactobacillus plantarum incorporated in diet to improve the growth performance and health status of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 120: 155–165.
  58. Quade M.J., Roth J.A. (1997). A rapid direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol., 58: 239–248.
  59. Rahimnejad S., Lu K., Wang L., Song K., Mai K., Davis D.A., Zhang C. (2019). Replacement of fish meal with Bacillus pumillus SE5 and Pseudozyma aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus). Fish Shellfish Immunol., 84: 987–997.
  60. Rajan B., Lokesh J., Kiron V., Brinchmann M.F. (2013). Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Vet. Res., 9: 1–11.
  61. Ramesh D., Souissi S. (2018). Effects of potential probiotic Bacillus subtilis KADR1 and its subcellular components on immune responses and disease resistance in Labeo rohita. Aquac. Res., 49: 367–377.
  62. Ramos C. L., Thorsen L., Schwan R.F., Jespersen L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol., 36: 22–29.
  63. Rasouli Y., Moradi M., Tajik H., Molaei R. (2021). Fabrication of anti-Listeria film based on bacterial cellulose and Lactobacillus sakei-derived bioactive metabolites; application in meat packaging. Food Biosci., 42: 101218.
  64. Reda R.M., Mahmoud R., Selim K.M., El-Araby I.E. (2016). Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 50: 255–262.
  65. Reyes-Becerril M., Angulo C., Estrada N., Murillo Y., Ascencio-Valle F. (2014). Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper (Lutjanus peru). Fish Shellfish Immunol., 40: 208–216.
  66. Ringø E., Song S.K. (2016). Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac. Nutr., 22: 4–24.
  67. Sadat Hoseini Madani N., Adorian T.J., Ghafari Farsani H., Hoseinifar S.H. (2018). The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of white-leg shrimp (Litopenaeus vannamei) postlarvae. Aquac. Res., 49: 1926–1933.
  68. Salih A.H.M., Patra I., Sivaraman R., Alhamzawi R., Khalikov K.M., Al-Qaim Z.H., Golgouneh S., Jawad M.A., Adhab A.H., Vázquez-Cárdenas A.L., Abarghouei S. (2023). The probiotic Lactobacillus sakei subsp. sakei and hawthorn extract supplements improved growth performance, digestive enzymes, immunity, and resistance to the pesticide acetamiprid in common carp (Cyprinus carpio). Aquac. Nutr., 2023.
  69. Sayed Hassani M.H., Jourdehi A.Y., Zelti A.H., Masouleh A.S., Lakani F.B. (2020). Effects of commercial superzist probiotic on growth performance and hematological and immune indices in fingerlings Acipenser baerii. Aquac. Int., 28: 377–387.
  70. Sharifian I., Rastiannasab A., Gandomkar H. (2015). Effects of diazinon on some immunological components of common carp, Cyprinus carpio juveniles. Comp. Clin. Pathol., 24: 1339–1341.
  71. Sun Y.Z., Yang H.L., Ma R.L., Lin W.Y. )2010(. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol., 29: 803–809.
  72. Tahir R., Ghaffar A., Abbas G., Turabi T.H., Kausar S., Xiaoxia D., Naz S., Jamil, H., Samra R.S., Abdelgayed S.S. (2021). Pesticide induced hematological, biochemical and genotoxic changes in fish: a review. Agrobiol. Records, 3: 41–57.
  73. Telli G.S., Ranzani-Paiva M.J.T., de Carla Dias D., Sussel F.R., Ishikawa C.M., Tachibana L. (2014). Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish Shellfish Immunol., 39: 305–311.
  74. Verdegem M., Buschmann A.H., Latt U.W., Dalsgaard A.J., Lovatelli A. (2023). The contribution of aquaculture systems to global aquaculture production. J. World Aquac. Soc., 54: 206–250.
  75. Vonk J.A., Kraak M.H. (2020). Herbicide exposure and toxicity to aquatic primary producers. Rev. Environ. Contam. Toxicol., 250: 119–171.
  76. Wang L., Ge C., Wang J., Dai J., Zhang P., Li Y. (2017). Effects of different combinations of Bacillus on immunity and antioxidant activities in common carp. Aquac. Int., 25: 2091–2099.
  77. Wang T., Long X., Cheng Y., Liu Z., Yan S. (2014). The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquat. Toxicol., 152: 96–104.
  78. Weifen L., Xiaoping Z., Wenhui S., Bin D., Quan L., Luoqin F., Jiajia Z., Dongyou Y. )2012(. Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus). Fish Physiol. Biochem., 38: 1585–1592.
  79. Yaghoubi B., Abadian H., Pouramir F., Mansourpour F. )2020(. Evaluating the efficacy of new slow released herbicide pyrazosulfuronethyl+ pretilachlor in weed control in transplanted rice. Cereal Res., 10: 181–192.
  80. Yanez-Lemus F., Moraga R., Smith C.T., Aguayo P., Sánchez-Alonzo K., García-Cancino A., Valenzuela A., Campos V.L. (2022). Selenium nanoparticle-enriched and potential probiotic, Lactiplantibacillus plantarum S14 strain, a diet supplement beneficial for rainbow trout. Biology, 11: 15–23.
  81. Yang G., Cao H., Jiang W., Hu B., Jian S., Wen C., Kajbaf K., Kumar V., Tao Z., Peng M. )2019). Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp (Carassius auratus var. Pengze): Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology. Aquac. Res., 50: 2207–2217.
  82. Yang G., Cui X., Liu S., Lu J., Hou X., Meng W., Fang Y. )2021(. Effects of dietary Lactobacillus helveticus on the growth rate, disease resistance and intestinal health of pond loach (Misgurnus anguillicaudatus). Aquaculture, 544: 737038.
  83. Yano T. (1992). Assays of hemolytic complement activity. Techniq. Fish Immunol., 131–141.
  84. Yeganeh S., Adel M., Nosratimovafagh A., Dawood M.A. (2021). The effect of Lactococcus lactis subsp. lactis PTCC 1403 on the growth performance, digestive enzymes activity, antioxidative status, immune response, and disease resistance of rainbow trout (Oncorhynchus mykiss). Prob. Antimicrob. Proteins, 13: 1723–1733.
  85. Yousefi M., Vatnikov Y.A., Kulikov E.V., Ahmadifar E., Mirghaed A.T., Hoseinifar S.H., Van Doan H. (2021). Effects of dietary Hibiscus sabdariffa supplementation on biochemical responses and inflammatory-related genes expression of rainbow trout, Oncorhynchus mykiss, to ammonia toxicity. Aquaculture, 533: 736095.
  86. Yousefi M., Ahmadifar M., Mohammadzadeh S., Kalhor N., Esfahani D.E., Bagheri A., Mashhadizadeh N., Moghadam M.S., Ahmadifar E. (2022). Individual and combined effects of the dietary Spirulina platensis and Bacillus licheniformis supplementation on growth performance, antioxidant capacity, innate immunity, relative gene expression and resistance of goldfish, Carassius auratus to Aeromonas hydrophila. Fish Shellfish Immunol., 127: 1070–1078.
  87. Yousefi M., Farsani M.N., Ghafarifarsani H., Raeeszadeh M. (2023 a). Dietary Lactobacillus helveticus and Gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. Fish Shellfish Immunol., 135: 108652.
  88. Yousefi M., Ghafarifarsani H., Raissy M., Yilmaz S., Vatnikov Y.A., Kulikov E.V. (2023 b). Effects of dietary malic acid supplementation on growth performance, antioxidant and immunological parameters, and intestinal gene expressions in rainbow trout, Oncorhynchus mykiss. Aquaculture, 563: 738864.
DOI: https://doi.org/10.2478/aoas-2025-0014 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1115 - 1127
Submitted on: Jul 3, 2024
Accepted on: Dec 18, 2024
Published on: Jul 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Xu Wang, Yi-Tong Han, Jia-Yi Zhang, Sudabe Ramezani, Hamed Ghafarifarsani, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.