References
- Abdel-Moneim A.M.E., Shehata A.M., Mohamed N.G., Elbaz A.M., Ibrahim N.S. (2022). Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol. Trace Element Res., 1: 1–12.
- Abdel-Wareth A.A.A., Williams A.N., Salahuddin M., Gadekar S., Lohakare J. (2024). Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: present status and future considerations. Front. Vet. Sci., 11: 1382163.
- Agustini T.W., Suzery M., Sutrisnanto D., Maruf W.F. (2015). Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Proc. Environ. Sci., 23: 282–289.
- Ahmad R., Yu Y.H., Hsiao F.S.H., Su C.H., Liu H.C., Tobin I., Cheng Y.H. (2022). Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals, 12: 2297.
- Aladaileh S.H., Khafaga A.F., Abd El-Hack M.E., Al-Gabri N.A., Abukhalil M.H., Alfwuaires M.A., Bin-Jumah M., Alkahtani S., Abdel-Daim M.M., Aleya L., Abdelnour S. (2022). Spirulina platensis ameliorates the sub-chronic toxicities of lead in rabbits via anti-oxidative, anti-inflammatory, and immune stimulatory properties. Sci. Total Environ., 701: 134879.
- Almeldin Y.A.R., Eldlebshany A.E., Elkhalek E.A., Abdel-Wareth A.A.A., Lohakare J. (2024). The effect of combining green iron nanoparticles and algae on the sustainability of broiler production under heat stress conditions. Front. Vet. Sci., 11: 1359213.
- Altmann B.A., Neumann C., Rothstein S., Liebert F., Mörlein D. (2019). Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into microalgae and insect protein in swine diets. Meat Sci., 153: 26–34.
- Anusree M.K., Manasa Leela K., Sreehari M., Raj S., Sreenikethanam A., Bajhaiya A.K. ( 2023). Chapter 14 – Marine microalgae: an emerging source of pharmaceuticals and bioactive compounds. In: New Horizons in Natural Compound Research. Academic Press, pp. 251–265.
- Arnaud C., Joyeux M., Garrel C., Godin-Ribuot D., Demenge P., Ribuot C. (2002). Free radical production triggered by hyperthermia contributes to heat stress-induced cardioprotection in isolated rat hearts. Br. J. Pharmacol., 135: 1776–1782.
- Attia Y.A., Hassan R.A., Tag El-Din A.E., Abou-Shehema B.M. (2011). Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Physiol. Anim. Nutr., 95: 744–755.
- Awad A.M., Sedeik M.E., Salaheldin A.H., Goda R.I., El-Shall N.A. (2023). Evaluating the effect of Spirulina platensis on the immune response of broiler chickens to various vaccines and virulent Newcastle disease virus challenge. Res. Vet. Sci., 164: 105012.
- Awad E.A., Najaa M., Zulaikha Z.A., Zulkifli I., Soleimani A.F. (2020). Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian Australas. J. Anim. Sci., 33: 778–787.
- Azeem M., Iqbal N., Mir R.A., Adeel S., Batool F., Khan A.A., Gul S. (2019). Harnessing natural colorants from algal species for fabric dyeing: A sustainable, eco-friendly approach for textile processing. J. Appl. Phycol., 31: 3941–3948.
- Balu S., Rothwell L., Kaiser P. (2011). Production and characterisation of monoclonal antibodies specific for chicken interleukin-12. Vet. Immunol. Immunopathol., 140: 140–146.
- Becker W. (2013). Microalgae for human and animal nutrition. In: Handbook of Microalgal Culture: Applied Phycology and Bio-technology, Hu Q., Richmond A. (eds). Wiley Blackwell, pp. 461–503.
- Begum H., Yusoff F.M.d., Banerjee S., Khatoon H., Shariff M. (2016). Availability and utilisation of pigments from microalgae. Crit. Rev. Food Sci. Nutr., 56: 2209–2222.
- Blas-Valdivia V., Ortiz-Butrn R., Pineda-Reynoso M., Hernndez-Garcia A., Cano-Europa E. (2011). Chlorella vulgaris administration prevents HgCl2 caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol., 23: 53–58.
- Borowitzka M.A. (2013). Dunaliella: biology, production, and markets. In: Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Hu Q., Richmond A. (eds). Wiley Blackwell, pp. 359–368.
- Brito A. de F., Silva A.S., de Oliveira C.V.C., de Souza A.A., Ferreira P.B., de Souza I.L.L., da Cunha Araujo L.C., da Silva Félix G., de Souza Sampaio R., Tavares R.L. (2020). Spirulina platensis prevents oxidative stress and inflammation promoted by strength training in rats: dose-response relation study. Sci. Rep., 10: 1–8.
- Burkholder K.M., Thompson K.L., Einstein M.E., Applegate T.J., Patterson J.A. (2008). Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis colonization in broilers. Poult. Sci., 87: 1734–1741.
- Cabrol M.B., Huerta A., Bordignon F., Pravato M., Birolo M., Petracci M., Xiccato G., Trocino A. (2024). Dietary supplementation with Chlorella vulgaris in broiler chickens submitted to heat-stress: effects on growth performance and meat quality. Poult. Sci., 103: 103828.
- Cai X., Huang Q., Wang S. (2015). Isolation of a novel lutein-protein complex from Chlorella vulgaris and its functional properties. Food Func., 6: 1893–1899.
- Cai Y.Y., Huang F.-Q., Lao X., Lu Y., Gao X., Alolga R.N., Yin K., Zhou X., Wang Y., Liu B., Shang J.,. Qi L. W., Li J. (2022). Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. Npj Biofilms Microbiomes, 8: 1–12.
- Camacho F., Macedo A., Malcata F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar. Drugs., 17: 312.
- Cedraz H., Gromboni J.G.G., Junior A.A.P.G., Filho R.V.F., Souza T.M., de Oliveira E.R., de Oliveira E.B., do Nascimento C.S., Meneghetti C., Wenceslau A.A. (2017). Heat stress induces expression of HSP genes in genetically divergent chickens. PLOS ONE 12:e0186083.
- Chaudhary A. (2023). Mitigation of heat stress in broiler chickens using dietary supplementation of microalgae. PhD. Thesis.https://hdl.handle.net/10125/107908
- Chaudhary A., Mishra P., Amaz S.A., Mahato P.L., Das R., Jha R., Mishra B. (2023). Dietary supplementation of microalgae mitigates the negative effects of heat stress in broilers. Poult. Sci., 102: 102958.
- Chegini S., Kiani A., Rokni H. (2018). Alleviation of thermal and overcrowding stress in finishing broilers by dietary propolis supplementation. Ital. J. Anim. Sci., 17: 377–385.
- Chisti Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.
- Compare D., Coccoli P., Rocco A., Nardone O.M., De Maria S., Cartenì M., Nardone G. (2012). Gut–liver axis: The impact of gut microbiota on non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis., 22: 471–476.
- Cornish M.L., Garbary D.J. (2021). Antioxidants from macroalgae: potential applications in human health and nutrition. Molecules, 26: 2489.
- De Farias N.F., Demarco M., Tribuzi G. (2019). Drying and quality of microalgal powders for human alimentation In: Microalgae-from physiology to application, Vítová M. (ed.). London, UK: IntechOpen, 88206.
- Delles R.M., Xiong Y.L., True A.D., Ao T., Dawson K.A. (2014). Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poult. Sci., 93: 1561–70.
- Demisu D.G., Benti B.D. (2018). Applications of Arthrospira platen-sis as an alternative source of food, maintaining nutritional security and awareness creation; thereby reducing problems of malnutrition in the society. World News Nat. Sci., 19: 1–8.
- Dore C.M., Alves P.G., Costa M.G.C.F., Sabry T.G., Rego D.A., Accardo L.A.S. (2013). A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, anti-thrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym., 91: 467–475.
- Elbaz A.M., Ahmed A.M.H., Abdel-Maqsoud A., Badran A.M.M., Abdel-Moneim A.-M.E. (2022). Potential ameliorative role of Spirulina platensis in powdered or extract forms against cyclic heat stress in broiler chickens. Environ. Sci. Pollut. Res., 29: 45578–45588.
- El-Chaghaby G.A., Rashad S., Abdel-Kader S.F., Rawash ElShimaa A., Moneem M.A. (2019). Assessment of phytochemical components, proximate composition and antioxidant properties of Scenedesmus obliquus, Chlorella vulgaris and Spirulina platensis algae extracts. Egypt. J. Aquat. Biol. Fish., 23: 521–526.
- El-Kassas H.Y., Mohamed L.A. (2014). Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt. J. Aquat. Res., 40: 301–308.
- El-Shall N.A., Jiang S.M.R., Farag M.A., Al-Abdullatif A.A., Alhotan R., Dhama K., Hassan F., Alagawany M. (2023). Potential of Spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front. Immunol., 14: 1072787.
- Fujimoto M., Nakai A. (2010). The heat shock factor family and adaptation to proteotoxic stress. FEBS J., 277: 4112–4125.
- Ghanima M.M.A., Abd El-Hack M.E., Othman S.I., Taha A.E., Allam A.A., Abdel-Moneim A.M.E. (2020). Impact of different rearing systems on growth, carcass traits, oxidative stress biomarkers, and humoral immunity of broilers exposed to heat stress. Poult. Sci., 99: 3070–3078.
- Gille A., Trautmann A., Posten C., Briviba K. (2016). Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas rein-hardtii. International J. Food Sci. Nutr., 67: 507–513.
- Gonzalez-Rivas P.A., Chauhan S.S., Ha M., Fegan N., Dunshea F.R., Warner R.D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci., 162: 108025.
- Gulcin I. (2012). Antioxidant activity of food constituents: an overview. Arch Toxic., 86: 345–391.
- Gutiérrez-Salmeán G., Fabila-Castillo L., Chamorro-Cevallos G. (2015). Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr. Hosp., 32: 34–40.
- Habibu B., Dzenda T., Ayo J.O., Yaqub L.S., Kawu M.U. (2018). Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci., 214: 189–201.
- Hajati H., Hassanabadi A., Golian A., Nassiri-Moghaddam H., Nassiri M.R. (2015). The effect of grape seed extract and vitamin C feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Ital. J. Anim. Sci., 14: 3273.
- He S.J., Yin Q.R., Xiong Y.J., Li J., Liu D.Y. (2020). Characterization of heat stress affecting the growth performance, blood biochemical profile, and redox status in male and female broilers at market age. Trop. Anim. Health Prod., 52: 3833–3841.
- Hirakawa R., Nurjanah S., Furukawa K., Murai A., Kikusato M., Nochi T., Toyomizu M. (2020). Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Front. Vet. Sci., 7: 46.
- Holman B.W., Malau-Aduli A.E. (2013). Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr., 97: 615–623.
- Humam A.M., Loh T.C., Foo H.L., Samsudin A.A., Mustapha N.M., Zulkifli I., Izuddin W.I. (2019). Effects of feeding different post-biotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals, 9: 644.
- Jha R., Mishra P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J. Anim. Sci. Biotechnol., 12: 51.
- Jha R., Fouhse J.M., Tiwari U.P., Li L., Willing B.P. (2019). Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci., 6.
- Jubie S., Ramesh P.N., Dhanabal P., Kalirajan R., Muruganantham N., Antony A.S. (2012). Synthesis, antidepressant, and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem., 54: 931–935.
- Kalia S., Magnuson A.D., Liu G., Lei X.G. (2021). Microalgae: a unique source of poultry feed protein. In: Seaweed and micro-algae as alternative sources of protein, Lei X.G. (ed.). London: Burleigh Dodds Science Publishing Limited., pp. 255–280.
- Kilic I., Simsek E. (2013). The effects of heat stress on egg production and quality of laying hens. J. Anim. Vet. Adv., 12: 42–47.
- Kuehu D.L., Fu Y., Nasu M., Yang H., Khadka V.S., Deng Y. (2024). Use of microalgae-derived astaxanthin to improve cytoprotective capacity in the ileum of heat-induced oxidative stressed broilers. Animals, 14: 1932.
- Lakshmanan A.P., Al Zaidan S., Bangarusamy D.K., Al-Shamari S., Elhag W., Terranegra A. (2022). Increased relative abundance of Ruminoccocus is associated with reduced cardiovascular risk in an obese population. Front. Nutr., 9: 849005.
- Lara L.J., Rostagno M.H. (2013). Impact of heat stress on poultry production. Animals, 3: 356–369.
- Leal K., Truong L., Maga E., King A. (2023). Lactobacillus (L. plan-tarum & L. rhamnosus) and Saccharomyces (S. cerevisiae): effects on performance, biochemical parameters, ammonium ion in manure, and digestibility of broiler chickens. Poult. Sci., 102: 102525.
- Lin X.J., Mei G.P., Liu J., Li Y.L., Zuo D., Liu S.J., Zhao T.B., Lin M.T. (2011). Therapeutic effects of melatonin on heatstroke-induced multiple organ dysfunction syndrome in rats. J. Pineal Res., 50: 436–444.
- Liu W.C., Ou B.H., Liang Z.L., Zhang R., Zhao Z.H. (2021). Algae-derived polysaccharides supplementation ameliorates heat stress-induced impairment of bursa of Fabricius via modulating NF-κB signaling pathway in broilers. Poult. Sci., 100: 101139.
- Long S.F., Kang S., Wang Q.Q., Xu Y.T., Pan L., Hu J.X., Li M., Piao X.S. (2018). Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, anti-oxidant status, and fatty acid profile of broilers. Poult. Sci., 97: 1881–1890.
- Lu T., Piao X.L., Zhang Q., Wang D., Piao X.S., Kim S.W. (2010). Protective effects of Forsythia suspensa extract against oxidative stress induced by diquat in rats. Food Chem. Toxicol., 48: 764–770.
- Lukić I., Getselter D., Ziv O., Oron O., Reuveni E., Koren O., Elliott E. (2019). Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry, 9: 1–16.
- Lynch J.B., Gonzalez E.L., Choy K., Faull K.F., Jewell T., Arellano A., Liang J., Yu K.B., Paramo J., Hsiao E.Y. (2022). Turicibacter modifies host bile acids and lipids in a strain-specific manner. Biorxiv, 497673.
- Madeira M.S., Cardoso C., Lopes P.A., Coelho D., Afonso C., Bandarra N.M., Prates J.A.M. (2017). Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci., 205: 111–121.
- Maibam U., Hooda O.K., Sharma P.S., Upadhyay R.C., Mohanty A.K. (2018). Differential level of oxidative stress markers in skin tissue of zebu and crossbreed cattle during thermal stress. Livest. Sci., 207: 45–50.
- Michalak I., Mahrose K. (2020). Seaweeds, intact and processed, as a valuable component of poultry feeds. J. Marine Sci. Engineer., 8: 620.
- Mikami A., Ogita T., Namai F., Shigemori S., Sato T., Shimosato T. (2020). Oral administration of Flavonifractor plautii attenuates inflammatory responses in obese adipose tissue. Mol. Biol. Rep., 47: 6717–6725.
- Mirzaie S., Zirak-Khattab M.F., Hosseini H.S.A., Donyaei-Darian H. (2018). Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian Australas J. Anim. Sci., 31: 556–563.
- Mishra P., Das R., Chaudhary A., Mishra B., Jha R. (2023). Effects of microalgae, with or without xylanase supplementation, on growth performance, organs development, and gut health parameters of broiler chickens. Poult. Sci., 102: 103056.
- Mojtaba F., Saeed M., Roya N. (2013). The effect of extracted salt from Urmia Lake on the growth, beta- carotene and chlorophyll a content of halophilic alga Chlorella sp. Turkish J. Fish. Aquat. Sci., 13: 233–240.
- Moustafa E.S., Alsanie W.F, Gaber A., Kamel N.N., Alaqil A.A., Abbas A.O. (2021). Blue-green algae (Spirulina platensis) alleviates the negative impact of heat stress on broiler production performance and redox status. Animals, 11: 1243.
- Mudd A.T., Berding K., Wang M., Donovan S.M., Dilger R.N. (2017). Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes., 8: 589–600.
- Mullaney J.A., Roy N.C., Halliday C., Young W., Altermann E., Kruger M.C., Dilger R.N., McNabb W.C. (2022). Effects of early postnatal life nutritional interventions on immune-microbiome interactions in the gastrointestinal tract and implications for brain development and function. Front. Microbiol., 13: 960492.
- Nawab A., Ibtisham F., Li G., Kieser B., Wu J., Liu W., Zhao Y., Nawab Y., Li K., Xiao M., An L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol., 78: 131–139.
- Nawaz A.H., Amoah K., Leng Q.Y., Zheng J.H., Zhang W.L., Zhang L. (2021). Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci., 8: 699081.
- Nogal A., Louca P., Zhang X., Wells P.M., Steves C.J., Spector T.D., Falchi M., Valdes A.M., Menni C. (2021). Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front. Microbiol., 12.
- Oakley B.B., Kogut M.H. (2016). Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front. Vet. Sci., 3: 11.
- Onwezen M.C., Bouwman E.P., Reinders M.J., Dagevos H. (2021). A systematic review on consumer acceptance of alternative proteins: pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159: 105058.
- Palmnäs-Bédard M.S., Costabile G., Vetrani C., Åberg S., Hjalmarsson Y., Dicksved J., Riccardi G., Landberg R. (2022). The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am. J. Clin. Nutr., 116: 862–874.
- Pan D., Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microb., 5: 108–119.
- Paul C., Murray A., Spears N., Saunders P. (2008). A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reprod. Camb. Engl., 136: 73–84.
- Peng Y., Deng A., Gong X., Li X., Zhang Y. (2017). Coupling process study of lipid production and mercury bioremediation by biomimetic mineralised microalgae. Biores. Technol., 243: 628–633.
- Pirkkala L., Nykanen P., Sistonen L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J., 15: 1118–1131.
- Ranjbarinasab Z., Mazhari M., Esmaeilipour O., Shahdadi F., Barazandeh A. (2024). Effects of the encapsulation of Lactobacillus acidophilus and Spirulina platensis on carcass yield and meat quality of broilers under heat stress conditions. Spanish J. Agric. Res., 22: e060.
- Rodriguez-Castaño G.P., Rey F.E., Caro-Quintero A., Acosta-González A. (2020). Gut-derived Flavonifractor species variants are differentially enriched during in vitro incubation with quercetin. PLoS ONE, 15:e0227724.
- Saadaoui I., Rasheed R., Aguilar A., Cherif M., Al Jabri H., Sayadi S., Manning S.R. (2021). Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol., 12: 76.
- Safafar H., Uldall Nørregaard P., Ljubic A., Møller P., Løvstad Holdt S., Jacobsen C. (2016). Enhancement of protein and pigment content in two Chlorella species cultivated on industrial process water. J. Marine Sci. Engin., 4: 84.
- Salem H.M., Alqhtani A.H., Swelum A.A., Babalghith A.O., Melebary S.J., Soliman S.M., Abd El-Hack M.E. (2022). Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J. Therm. Biol., 108: 103302.
- Shanmugapriya B., Babu S.S., Hariharan T., Sivaneswaran S., Anusha M.B. (2015). Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. Int. J. Recent Sci. Res., 6: 2650–2653.
- Sheehan D., Meade G., Foley V.M., Dowd C.A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J., 360: 1–16.
- Shehata AM., Saadeldin I.M., Tukur H.A., Habashy W.S. (2020). Modulation of heat shock proteins mediates chicken cell survival against thermal stress. Animals, 10: 2407.
- Shi D., Bai l., Qu Q., Zhou S., Yang M., Guo S., Li Q., Liu C. (2019). Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci., 98: 2405–2413.
- Sikora A., Grzesiuk E. (2007). Heat shock response in gastrointestinal tract. J. Physiol. Pharmacol., 58, Suppl. 3: 43–62.
- Singh A.K., Mandal R.K., Bedford M.R., Jha R. (2021). Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim. Feed Sci. Technol., 277: 114956.
- Singh R., Birru R., Sibi G. (2017). Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. J. Environ. Protec., 8: 1–11.
- Sirakov I., Velichkova K., Stoyanova S., Staykov Y. (2015). The importance of microalgae for aquaculture industry. Review. Inter. J. Fisher. Aquat. Stud., 2: 81–84.
- Sugiharto S. (2020). Nutraceutical aspects of microalgae Spirulina and Chlorella on broiler chickens. Livest. Res. Rural Dev., 32: 84.
- Sun T., Yin R., Magnuson A.D., Tolba S.A., Liu G., Lei X.G. (2018). Dose dependent enrichments and improved redox status in tissues of broiler chicks under heat stress by dietary supplemental micro-algal astaxanthin. J. Agric. Food Chem., 66: 5521–5530.
- Surai P. (2016). Antioxidant systems in poultry biology: superoxide dismutase. Anim. Nutr., 1: 8.
- Surai P.F., Kochish I.I., Fisinin V.I. (2018). Glutathione peroxidases in poultry biology: Part 1. Classification and mechanisms of action. Worlds Poult. Sci. J., 74: 185–198.
- Tang L.P., Liu Y.L., Ding K.N., Hou X.J., Qin J.J., Zhang Y.A., Liu H.X., Shen X.L., He Y.M. (2021). Chai Hu oral liquid enhances the immune functions of both spleen and bursa of Fabricius in heat-stressed broilers through strengthening TLR4-TBK1 signaling pathway. Poult. Sci., 100: 101302.
- Tibbetts S.M., Milley J.E., Lall S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119.
- Valente L.M.P., Cabrita A.R.J., Maia M.R.G., Valente I.M., Engrola S., Fonseca A.J.M., Ribeiro D.M., Lordelo M., Martins C.F., Falcão-E-Cunha L., et al. (2020). Microalgae as feed ingredients for livestock production and aquaculture. In: Microalgae Cultivation, Recovery of Compounds and Applications, Galanakis C.M., (ed.). Academic Press, Inc.: London, UK, pp. 239–302.
- Walugembe M., Hsieh J.C.F., Koszewski N.J., Lamont S.J., Persia M.E., Rothschild M.F. (2015). Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci., 94: 2351–2359.
- Wasti S., Sah N., Mishra B. (2020). Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10: 1266.
- Xu J., Tang S., Song E., Yin B., Wu D., Bao E. (2017). Hsp70 expression induced by co-enzyme Q10 protected chicken myocardial cells from damage and apoptosis under in vitro heat stress. Poult. Sci., 96: 1426–1437.
- Xu J., Tang S., Yin B., Sun J., Bao E. (2018). Co-enzyme Q10 upregulates Hsp70 and protects chicken primary myocardial cells under in vitro heat stress via PKC/MAPK. Mol. Cell. Biochem., 449: 195–206.
- Xu J., Yin B., Huang B., Tang S., Zhang X., Sun J., Bao E. (2019). Co-enzyme Q10 protects chicken hearts from in vivo heat stress via inducing HSF1 binding activity and Hsp70 expression. Poult. Sci., 98: 1002–1011.
- Yaakob Z., Ali E., Zainal A., Mohamad M., Takriff M.S. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res.-Thessaloniki., 21: 1–10.
- Yang W., Yu T., Huang X., Bilotta A.J., Xu L., Lu Y., Sun J., Pan F., Zhou J., Zhang W., Yao S., Maynard C.L., Singh N., Dann S.M., Liu Z., Cong Y. (2020). Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun., 11: 4457.
- Yin H., Huang j., Guo X., Xia J., Hu M. (2023). Romboutsia lituseburensis JCM1404 supplementation ameliorated endothelial function via gut microbiota modulation and lipid metabolism alterations in obese rats. FEMS Microbiol., Lett., https://doi.org/10.1093/femsle/fnad016
- Zeweil H., Abaza I.M., Zahran S.M., Ahmed M.H., AboulEla H.M., Saad A.A. (2016). Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian J. Biomed. Pharmaceut. Sci., 6: 8–12.
- Zhang J.F., Hu Z.P., Lu C.H., Yang M.X., Zhang L.L., Wang T. (2015). Dietary curcumin supplementation protects against heat stress-impaired growth performance of broilers possibly through a mitochondrial pathway. J. Anim. Sci., 93: 1656–1665.