Have a personal or library account? Click to login
Connecting Polyphenols and Myofibrillar Proteins with Their Bioactive Potentials –A Terse Review* Cover

Connecting Polyphenols and Myofibrillar Proteins with Their Bioactive Potentials –A Terse Review*

Open Access
|Jul 2025

References

  1. Abdel-Naime W.A., Fahim J.R., Abdelmohsen U.R., Fouad M.A., Al-Footy K.O., Abdel-Lateff A.A., Kamel M.S. (2019). New antimicrobial triterpene glycosides from lemon balm (Melissa officinalis). S. Afr. J. Bot., 125: 161–167.
  2. Abdel-Rahman A., Anyangwe N., Carlacci L., Casper S., Danam R. P., Enongene E., Erives G., Fabricant D., Gudi R., Hilmas C.J., Hines F., Howard P., Levy D., Moore R.J., Pfeiler E., Thurmond T.S., Turujman S., Walker N.J. (2011). The safety and regulation of natural products used as foods and food ingredients. Toxicol. Sci., 123: 333–348.
  3. Adebooye O.C., Alashi A.M., Aluko R.E. (2018). A brief review on emerging trends in global polyphenol research. J. Food Biochem., 42: e12519.
  4. Adukwu E.C., Bowles M., Edwards-Jones V., Bone H. (2016). Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol., 100: 9619–9627.
  5. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2002). Protein function. In: Molecular Biology of the Cell. 4th edition. Garland Science.
  6. Alfredsson C.F., Ding M., Liang Q.L., Sundström B.E., Nånberg E. (2014). Ellagic acid induces a dose-and time-dependent depolarization of mitochondria and activation of caspase-9 and-3 in human neuroblastoma cells. Biomed. Pharmacother., 68: 129–135.
  7. Ali S.S., Zia M.K., Siddiqui T., Khan F.H. (2018). Binding interaction of sheep alpha-2-macroglobulin and tannic acid: A spectroscopic and thermodynamic study. Spectrochim. Acta A, 204: 748–753.
  8. Antony A., Farid M. (2022). Effect of temperatures on polyphenols during extraction. Appl. Sci., 12: 2107.
  9. Arfat Y.A., Benjakul S., Prodpran T., Sumpavapol P., Songtipya P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll., 41: 265–273.
  10. Bagchi D. (2014). Editor. Nutraceutical and functional food regulations in the United States and around the world. Elsevier.
  11. Bahramsoltani R., Sodagari H.R., Farzaei M.H., Abdolghaffari A.H., Gooshe M., Rezaei N. (2016). The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev. Anti. Infect. Ther., 14: 57–80.
  12. Bakkali F., Averbeck S., Averbeck D., Idaomar M. (2008). Biological effects of essential oils –A review. Food Chem. Toxicol., 46: 446–475.
  13. Balange A., Benjakul S. (2009). Enhancement of gel strength of bigeye snapper (Priacanthus tayenus) surimi using oxidised phenolic compounds. Food Chem., 113: 61–70.
  14. Bao Y., Ertbjerg P. (2015). Relationship between oxygen concentration, shear force and protein oxidation in modified atmosphere packaged pork. Meat Sci., 110: 174–179.
  15. Baranauskiene R., Venskutonis P.R., Dewettinck K., Verhé R. (2013). Properties of thyme essential oil on protein stability in meat. LWT–Food Sci. Technol., 53: 121–126.
  16. Barbieri G., Bergamaschi M., Saccani G., Caruso G., Santangelo A., Tulumello R., Vibhute B., Barbieri G. (2019). Processed meat and polyphenols: opportunities, advantages, and difficulties. J. AOAC Int., 102: 1401–1406.
  17. Baur J.A., Sinclair D.A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 5: 493–506.
  18. Bensid A., El Abed N., Houicher A., Regenstein J.M., Özogul F. (2022). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food –a review. Crit. Rev. Food Sci. Nutr., 62: 2985–3001.
  19. Biswas A.K., Keshri R.C., Bisht G.S. (2012). Antioxidative effect of mint extract on the storage stability of chicken patties. Meat Sci., 90: 598–606.
  20. Bittner S. (2006). When quinones meet amino acids: chemical, physical and biological consequences. Amino Acids, 30: 205–224.
  21. Böhl M., Tietze S., Sokoll A., Madathil S., Pfennig F., Apostolakis J., Fahmy K., Gutzeit H.O. (2007). Flavonoids affect actin functions in cytoplasm and nucleus. Biophys. J., 93: 2767–2780.
  22. Bolouri P., Salami R., Kouhi S., Kordi M., Asgari Lajayer B., Hadian J., Astatkie T. (2022). Applications of essential oils and plant extracts in different industries. Molecules, 27: 8999.
  23. Calo J.R., Crandall P.G., O’Bryan C.A., Ricke S.C. (2015). Essential oils as antimicrobials in food systems –A review. Food Control, 54: 111–119.
  24. Cao H., Saroglu O., Karadag A., Diaconeasa Z., Zoccatelli G., Conte-Junior C.A., Gonzalez-Aguilar G.A., Ou J., Bai W., Mara Zamarioli C., Pedro de Freitas L.A., Shpigelman A., Campelo P.H., Capanoglu E., Lik Hii C., Mahdi Jafari S., Qi Y., Liao P., Wang M., Zou L., Bourke P., Simal-Gandara J., Xiao J. (2021). Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2: 109–139.
  25. Cao Y., Xiong Y.L. (2015). Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem., 180: 235–243.
  26. Cao Y., True A.D., Chen J., Xiong Y.L. (2016). Dual role (anti- and pro-oxidant) of gallic acid in mediating myofibrillar protein gelation and gel in vitro digestion. J. Agric. Food Chem., 64: 3054–3061.
  27. Carson C.F., Hammer K.A., Riley T.V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev., 19: 50–62.
  28. Cava R., Nowak E., Taboada A., Marin-Iniesta F. (2007). Antioxidant activity of oregano and sage essential oils in model food systems. Meat Sci., 79: 194–200.
  29. Cavanagh H.M., Wilkinson J.M. (2002). Biological activities of lavender essential oil. Phytother. Res., 16: 301–308.
  30. Chandra H., Bishnoi P., Yadav A., Patni B., Mishra A.P., Nautiyal A.R. (2017). Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials –a review. Plants, 6: 16.
  31. Chatsudthipong V., Muanprasat C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther., 121: 41–54.
  32. Chen H., Diao J., Li Y., Chen Q., Kong B. (2016). The effectiveness of clove extracts in the inhibition of hydroxyl radical oxidation-induced structural and rheological changes in porcine myofibrillar protein. Meat Sci., 111: 60–66.
  33. Cheng J., Zhu M., Liu X. (2020). Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chem., 308: 125592.
  34. Cheng J., Lin Y., Tang D., Yang H., Liu X. (2022). Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals. LWT, 156: 113073.
  35. Cozzone A.J. (2002). Proteins: Fundamental chemical properties. Encyclopedia of Life Sciences, John Wiley & Sons Ltd, pp. 1–10.
  36. Cushnie T.T., Lamb A.J. (2005). Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343–356.
  37. da Silva B.D., Bernardes P.C., Pinheiro P.F., Fantuzzi E., Roberto C.D. (2021). Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci., 176: 108463.
  38. Daglia M. (2012). Polyphenols as antimicrobial agents. Curr. Opin. Biotech., 23: 174–181.
  39. Dai T., Chen J., McClements D.J., Hu P., Ye X., Liu C., Li T. (2019). Protein–polyphenol interactions enhance the antioxidant capacity of phenolics: Analysis of rice glutelin–procyanidin dimer interactions. Food Funct., 10: 765–774.
  40. Dara P.K., Geetha A., Mohanty U., Raghavankutty M., Mathew S., Nagarajarao R.C., Rangasamy A. (2021). Extraction and characterization of myofibrillar proteins from different meat sources: a comparative study. J. Bioresour. Bioprod., 6: 367–378.
  41. Day A., Dupont M.S., Ridley S., Rhodes M., Rhodes M.J., Morgan M.R., Williamson G. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett., 436: 71–75.
  42. Debelo H., Li M., Ferruzzi M.G. (2020). Processing influences on food polyphenol profiles and biological activity. Curr. Opin. Food Sci., 32: 90–102.
  43. Decker E.A., Xiong Y.L., Calvert J.T., Crum A.D., Blanchard S.P. (1993). Chemical, physical, and functional-properties of oxidized turkey white muscle myofibrillar proteins. J. Agric. Food Chem., 41: 186–189.
  44. Decker E.A., Livisay S.A., Zhou S. (2002). Antioxidant activity of carnosine, carnosine derivatives and synthetic dipeptides in cooked ground beef. J. Food Sci., 67: 3302–3308.
  45. Demetriades K., Coupland J.N., McClements D.J. (1997). Physico-chemical properties of whey protein-stabilized emulsions as affected by heating and ionic strength. J. Food Sci., 62: 462–467.
  46. Deng J., Yang H., Capanoglu E., Cao H., Xiao J. (2018). Technological aspects and stability of polyphenols. In: Polyphenols: Properties, recovery, and applications, Galanakis C.M. (ed.). Woodhead Publishing, Cambridge, UK, pp. 295–323.
  47. Emiroğlu Z.K., Yemiş G.P., Coşkun B.K., Candoğan K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci., 86: 283–288.
  48. Eslahi H., Fahimi N., Sardarian A.R. (2017). Chemical composition of essential oils. In: Essential oils in food processing: chemistry, safety and applications, Hashemi S.M.B., Khaneghah A.M., de Souza Sant’Ana A. (eds). Wiley, pp. 119–171.
  49. Estévez M. (2011). Protein carbonyls in meat systems: A review. Meat Sci., 89: 259–279.
  50. Estévez M., Luna C. (2017). Dietary protein oxidation: A silent threat to human health? Crit. Rev. Food Sci. Nutr., 57: 3781–3793.
  51. Feng C.H., Arai H. (2022). Evaluation of hesperidin on sausages stuffed in a new modified casing during long-term storage –a preliminary study. Sustainability, 14: 9071.
  52. Fernández-López J., Viuda-Martos M., Sendra E., Sayas-Barberá E., Navarro C., Pérez-Alvarez J.A. (2007). Orange fibre as potential functional ingredient for dry-cured sausages. Eur. Food Res. Technol., 226: 1–6.
  53. Fernández-Ochoa Á., Cádiz-Gurrea M.D.L.L., Fernández-Moreno P., Rojas-García A., Arráez-Román D., Segura-Carretero A. (2022). Recent analytical approaches for the study of bioavailability and metabolism of bioactive phenolic compounds. Molecules, 27: 777.
  54. Friesen K., Chang C., Nickerson M. (2015). Incorporation of phenolic compounds, rutin and epicatechin, into soy protein isolate films: Mechanical, barrier and cross-linking properties. Food Chem., 172: 18–23.
  55. Garcia R., Torres M.A., Rodriguez P. (2018). Stevioside’s protective role in meat preservation. J. Food Process. Preserv., 42: e13332.
  56. Gravador R.S., Jongberg S., Andersen M.L., Luciano G., Priolo A., Lund M.N. (2014). Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions. Meat Sci., 97: 231–236.
  57. Han K., Feng X., Yang Y., Wei S., Tang X., Li S., Chen Y. (2021). Effects of camellia oil on the properties and molecular forces of myofibrillar protein gel induced by microwave heating. Int. J. Food Sci. Technol., 56: 5708–5716.
  58. Harrington W.F., Rodgers M.E. (1984). Myosin. Annu. Rev. Biochem., 53: 35–73.
  59. He Z.G., Zhang Y., Yang M.D., Zhang Y.Q., Cui Y.Y., Du M.Y., Sun H. (2022). Effect of different sweeteners on the quality, fatty acid and volatile flavor compounds of braised pork. Front. Nutr., 9.
  60. Higuchi M., Abiko Y., Washio J., Takahashi N. (2024). Antimicrobial effects of epigallocatechin-3-gallate, a catechin abundant in green tea, on periodontal disease-associated bacteria. Archiv. Oral Biol., 167: 106063.
  61. Hostettmann K., Marston A. (1995). Saponins. Cambridge University Press.
  62. Huang S.C., Tsai Y.F., Chen C.M. (2011). Effects of wheat fiber, oat fiber, and inulin on sensory and physico-chemical properties of Chinese-style sausages. Meat Sci., 88: 552–558.
  63. Huang X., Sun L., Liu L., Wang G., Luo P., Tang D., Huang Q. (2022). Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein. Food Chem., 372: 131241.
  64. Huq T., Vu K.D., Riedl B., Bouchard J., Lacroix M. (2015). Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol., 46: 507–514.
  65. Hussain A.I., Anwar F., Sherazi S.T.H., Przybylski R. (2013). Chemical composition, antioxidant and antimicrobial activities of basil oils. Food Chem., 108: 986–995.
  66. Jagessar R.C. (2019). Antioxidant properties of plant extracts. Pharm. Anal. Acta, 1: 18–21.
  67. Jakobek L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 175: 556–567.
  68. Jia N., Zhang F., Liu Q., Wang L., Lin S., Liu D. (2019). The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation. Food Chem., 301: 125206.
  69. Jiang J., Xiong Y.L., Chen J. (2014). Role of β-carotene in the texture-modifying and antioxidant effects of olive oil emulsions in raw and cooked chicken batters. J. Food Sci., 79: C654–C660.
  70. Jiang J., Watowita P.S.M.S.L., Chen R., Shi Y., Geng J.T., Takahashi K., Osako K. (2022). Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag. Shelf Life, 32: 100842.
  71. John J.H., Kumar V., Roberts J. (2008). Effect of digitoxin on thermal stability of muscle proteins. J. Food Sci., 73: C471–C476.
  72. Jones R.L., Zhang H. (2010). Esculin’s role in reducing protein oxidation and inflammation. Food Chem., 122: 682–688.
  73. Jongberg S., Skov S.H., Tørngren M.A., Skibsted L.H., Lund M.N. (2011). Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem., 128: 276–283.
  74. Kim K., Kim Y.H., Kim H.J. (2011). Antioxidant activities of tea tree oil in meat products. Food Chem., 129: 1207–1213.
  75. Kim Y.J., Jin S.K., Yang H.S. (2003). Effect of dietary garlic bulb and husk on the physicochemical properties of chicken meat. Poultry Sci., 88: 398–405.
  76. Kumar D., Singh A., Verma S. (2012). Impact of digitoxin on protein stability and function in meat products. Food Res. Int., 45: 246–250.
  77. Kyte J. (2006). Structure in protein chemistry. Garland Science.
  78. Lahmar A., Bedoui A., Mokdad-Bzeouich I., Dhaouifi Z., Kalboussi Z., Cheraif I., Ghedira K., Chekir-Ghedira L. (2017). Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb. Pathog., 106: 50–59.
  79. Lam R.S., Nickerson M.T. (2013). Food proteins: a review on their emulsifying properties using a structure–function approach. Food Chem., 141: 975–984.
  80. Lan W., Sun Y., Chen M., Li H., Ren Z., Lu Z., Xie J. (2021). Effects of pectin combined with plant essential oils on water migration, myofibrillar proteins and muscle tissue enzyme activity of vacuum packaged large yellow croaker (Pseudosciaena crocea) during ice storage. Food Packag. Shelf Life, 30: 100699.
  81. LaPelusa A., Kaushik R. (2021). Physiology, Proteins. In StatPearls [Internet]. StatPearls Publishing.
  82. Lawrence H.A., Palombo E.A. (2009). Activity of essential oils against Bacillus subtilis spores. J. Microbiol. Biotechnol., 19: 1590–1595.
  83. Le Bourvellec C., Renard C.M.G.C. (2012). Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr., 52: 213–248.
  84. Leopoldini M., Russo N., Toscano M., (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem., 125: 288–306.
  85. Li X., Zhang J. (2011). Hesperidin’s impact on the oxidative stability of muscle proteins. Food Chem., 127: 1239–1246.
  86. Li Y., Yao J., Han C., Yang J., Chaudhry M.T., Wang S., Liu H., Yin Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8: 167.
  87. Liang H.N., Tang C.H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocoll., 33: 309–319.
  88. Liao Y., Chen F., Xu L., Dessie W., Li J., Qin Z. (2022). Study on extraction and antibacterial activity of aucubin from Eucommia ulmoides seed-draff waste biomass. Heliyon, 8.
  89. Lima M.D.C., de Sousa C.P., Fernandez-Prada C., Harel J., Dubreuil J.D., De Souza E.L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog., 130: 259–270.
  90. Lin L.-Z., Harnly J.M. (2007). A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J. Agric. Food Chem., 55.
  91. Lin X., Cao S., Sun J., Lu D., Zhong B., Chun J. (2021). The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. Molecules, 26: 3412.
  92. Liu H., Wang L., Zhang L. (2015). Protective effect of salicin on protein oxidation in meat products. Food Chem., 182: 35–41.
  93. Maqsood S., Benjakul S., Shahidi F. (2013). Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit. Rev. Food Sci. Nutr., 53: 162–179.
  94. Marchese A., Orhan I.E., Daglia M., Barbieri R., Di Lorenzo A., Nabavi S.F., Gortzi O., Izadi M., Nabavi S.M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 210: 402–414.
  95. Márquez-Rodríguez A.S., Nevárez-Baca S., Lerma-Hernández J.C., Hernández-Ochoa L.R., Nevárez-Moorillon G.V., Gutiérrez-Méndez N., Muñoz-Castellanos L.N., Salas E. (2020). In vitro antibacterial activity of Hibiscus sabdariffa L. phenolic extract and its in situ application on shelf-life of beef meat. Foods, 9: 1080.
  96. Martínez L., Bastida P., Castillo J., Ros G., Nieto G. (2019). Green alternatives to synthetic antioxidants, antimicrobials, nitrates, and nitrites in clean label Spanish “chorizo”. Antioxidants, 8: 184.
  97. McCarthy T.L., Kerry J.P., Kerry J.F., Lynch P.B., Buckley D.J. (2004). Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci., 67: 129–137.
  98. McKay D.L., Blumberg J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res., 20: 619–633.
  99. Mecozzi M., Sturchio E. (2015). Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 137: 90–98.
  100. Mendoza F., Garcia M.L., Saura-Calixto F. (2014). Stevioside’s antioxidative effects on muscle protein oxidation. Meat Sci., 98: 360–366.
  101. Murota K., Terao J. (2003). Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 417: 12–17.
  102. Nagy K., Courtet-Compondu M.C., Williamson G., Rezzi S., Kussmann M., Rytz A. (2012). Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chem., 132: 1333–1339.
  103. Nielsen P.M. (1997). Functionality of protein hydrolysates. In: Food proteins and their applications, Damodaran S., Paraf A. (eds). CRC Press, pp. 443–472.
  104. Nieto G., Jongberg S., Andersen M.L., Skibsted L.H., Ros G. (2010). Rosemary extract and chitosan to improve the shelf life of chicken patties. Food Chem., 119: 1234–1240.
  105. Nikoo M., Regenstein J.M., Ahmadi Gavlighi H. (2018). Antioxidant and antimicrobial activities of (−)−epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Compr. Rev. Food Sci. Food Saf., 17: 732–753.
  106. Nwozo O.S., Effiong E.M., Aja P.M., Awuchi C.G., (2023). Anti-oxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop., 26: 359–388.
  107. Olatunde O.O., Benjakul S. (2018). Natural preservatives for extending the shelf-life of seafood: A revisit. Compr. Rev. Food Sci. Food Saf., 17: 1595–1612.
  108. Oulahal N., Degraeve P. (2022). Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides? Front. Microbiol., 12: 3906.
  109. Ozdal T., Capanoglu E., Altay F. (2013). A review on protein–phenolic interactions and associated changes. Food Res. Int., 51: 954–970.
  110. Park H., Seol G.H., Ryu S., Choi I.Y. (2016). Neuroprotective effects of (−)-linalool against oxygen-glucose deprivation-induced neuronal injury. Arch. Pharmacal Res., 39: 555–564.
  111. Parke D.V., Lewis D.F.V. (1992). Safety aspects of food preservatives. Food Addit. Contam., 9: 561–577.
  112. Parrella E., Gussago C., Porrini V., Benarese M., Pizzi M. (2020). From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke. Nutrients, 13: 85.
  113. Patanè P., Laganà P., Devi P., Vig A., Haddad M. A., Natalello S., Cava M.A., Ameen S.M., Hashim H. A. (2019). Polyphenols and functional foods from the regulatory viewpoint. J. AOAC Int., 102: 1373–1377.
  114. Patra J.K., Baek K.H. (2016). Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against food-borne pathogenic bacteria. Molecules, 21: 388.
  115. Pereira P.M.D.C.C., Vicente A.F.D.R.B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Sci., 93: 586–592.
  116. Petracci M., Bianchi M., Mudalal S., Cavani C. (2013). Functional ingredients for poultry meat products. Trends Food Sci. Technol., 33: 27–39.
  117. Pintado C.M., de Larriva R.M., de Melo N.R., Fernandes C.A. (2010). Thyme extracts and its benefits on protein stability in fresh sausages. Meat Sci., 85: 303–309.
  118. Podolak I., Galanty A., Sobolewska D. (2010). Saponins as cytotoxic agents: A review. Phytochem. Rev., 9: 425–474.
  119. Prieto M.A., Otero P., Rodriguez M.C. (2022). Editors. Natural Food Additives. BoD–Books on Demand.
  120. Quan T.H., Benjakul S., Sae-leaw T., Balange A.K., Maqsood S. (2019). Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol., 91: 507–517.
  121. Rani S., Singh R., Sharma P. (2013). Role of rutin in stabilizing meat proteins and enhancing texture. J. Food Eng., 116: 555–562.
  122. Rawel H.M., Rohn S. (2010). Nature of hydroxycinnamate-protein interactions. Phytochem. Rev., 9: 93–109.
  123. Reisler E., Egelman E.H. (2007). Actin structure and function: what we still do not understand. J. Biol. Chem., 282: 36133–36137.
  124. Rios J. L., Recio M. C., (2005). Medicinal plants and antimicrobial activity. J. Ethnopharmacol., 100: 80–84.
  125. Rojas M.C., Brewer M.S. (2006). Effect of natural antioxidants on oxidative stability of cooked, refrigerated pork patties. J. Food Sci., 71: S511–S516.
  126. Roura S.I., Davidovich L.A., Agüero M.V. (2006). Effect of antioxidants on color and lipid stability of beef patties. Meat Sci., 72: 846–850.
  127. Ruiz-Hernández K., Sosa-Morales M.E., Cerón-García A., Gómez-Salazar J.A. (2021). Physical, chemical and sensory changes in meat and meat products induced by the addition of essential oils: A concise review. Food Rev. Int., 39.
  128. Sadlon A.E., Lamson D.W. (2010). Immune-modifying and antimicrobial effects of eucalyptus oil and simple inhalation devices. Altern. Med. Rev., 15: 33-47.
  129. Sante-Lhoutellier V., Aubry L., Gatellier P. (2007). Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins, J. Agric. Food Chem., 55: 5343–5348.
  130. Sarıcaoglu F.T., Turhan S. (2020). Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag. Shelf Life, 25: 100527.
  131. Sato Y., Itagaki S., Kurokawa T., Ogura J., Kobayashi M., Hirano T., Sugawara M., Iseki K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 403: 136–138.
  132. Schmitt C., Sanchez C., Desobry-Banon S., Hardy J. (1998). Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit. Rev. Food Sci. Nutr., 38: 689–753.
  133. Sebranek J.G., Sewalt V.J., Robbins K.L., Houser T.A. (2005). Oxygenated myoglobin as an indicator of color in fresh pork. J. Food Sci., 70: 211–217.
  134. Sharifi-Rad M., Varoni E.M., Iriti M., Martorell M., Setzer W.N., del Mar Contreras M., Salehi B., Soltani-Nejad A., Rajabi S., Tajbakhsh M., Sharifi-Rad J. (2018). Carvacrol and human health: A comprehensive review. Phytother. Res., 32: 1675–1687.
  135. Shen H., Zhao M., Sun W. (2019). Effect of pH on the interaction of porcine myofibrillar proteins with pyrazine compounds. Food Chem., 287: 93–99.
  136. Sikorski Z.E. (2006). Chemical and Functional Properties of Food Components. CRC Press.
  137. Silva A.R.S.T., Scher R., Santos F.V., Ferreira S.R., Cavalcanti S.C.H., Correa C.B., Bueno L.L., Alves R.J., Souza D.P., Fujiwara R.T., Dolabella S.S. (2017). Leishmanicidal activity and structure–activity relationships of essential oil constituents. Molecules, 22: 815.
  138. Silva N.C.C., Fernandes Júnior A.J.J.O.V.A. (2010). Biological properties of medicinal plants: a review of their antimicrobial activity. J. Venom. Anim. Toxins incl. Trop. Dis., 16: 402–413.
  139. Singh J., Jain S.K. (2017). Rutin as an effective stabilizer of myofibrillar proteins. Food Biophys., 12: 87–96.
  140. Sirk T.W., Brown E.F., Friedman M., Sum A.K. (2009). Molecular binding of catechins to biomembranes: relationship to biological activity. J. Agric. Food Chem., 57: 6720–6728.
  141. Smolińska-Juny T., Kopeć W. (2009). Editors. Przetwórstwo mięsa drobiu –podstawy biologiczne i technologiczne: praca zbiorowa (in Polish). Wydawnictwo Uniwersytetu Przyrodniczego.
  142. Southan M., MacRitchie F. (1999). Molecular weight distribution of wheat proteins. Cereal Chem., 76: 827–836.
  143. Subramenium G.A., Vijayakumar K., Pandian S.K. (2015). Limonene inhibits Streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol., 64: 879–890.
  144. Sun X.D., Holley R.A. (2011). Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf., 10: 33–51.
  145. Tagousop C.N., Tamokou J.D.D., Ekom S.E., Ngnokam D., Voutquenne-Nazabadioko L. (2018). Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med., 18: 1–10.
  146. Tang J., Faustman C., Hoagland T.A. (2001). The effects of antioxidants on the color and lipid stability of cooked beef patties. J. Food Sci., 66: 1316–1320.
  147. Tohge T., de Souza L.P., Fernie A.R. (2017). Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot., 68: 4013–4028.
  148. Usta J., Kreydiyyeh S., Knio K., Barnabe P., Bou-Moughlabay Y., Dagher S. (2009). Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels. Chem.-Biol. Interact., 180: 39–46.
  149. Utrera M., Estevez M. (2012). Oxidation of myofibrillar proteins and impaired functionality: Underlying mechanisms of the carbonylation pathway. J. Agric. Food Chem., 60: 8002–8011.
  150. Villaverde A., Ventanas J., Estévez M. (2014). Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: Are both events connected? Meat Sci., 62: 665–672.
  151. Wang L.L., Xiong Y.L. (2008). Inhibition of oxidant-induced biochemical changes of pork myofibrillar protein by hydrolyzed potato protein. J. Food Sci., 73: C482–C487.
  152. Wang Z., He Z., Zhang D., Chen X., Li H. (2021). The effect of linalool, limonene and sabinene on the thermal stability and structure of rabbit meat myofibrillar protein under malondialdehyde-induced oxidative stress. Lwt, 148: 111707.
  153. Whitford D. (2013). Proteins: Structure and Function. John Wiley & Sons.
  154. Xiao J., Muzashvili T.S., Georgiev M.I. (2014). Advances in the bio-technological glycosylation of valuable flavonoids. Biotechnol. Adv., 32: 1145–1156.
  155. Xiong Y.L., Decker E.A. (1995). Alterations of muscle proteins functionality by oxidative and antioxidative processes. J. Mus. Foods, 6: 139–160.
  156. Xiong Y.L., Decker E.A., Robe G.H., Moody W.G. (1993). Gelation of crude myofibrillar protein isolated from beef heart under antioxidative conditions. J. Food Sci., 58: 1241–1244.
  157. Xiong Y.L., Tang J., Blanchard S.P. (2000). Effect of protein oxidation on myofibrillar protein functionality. J. Mus. Foods, 11: 129–144.
  158. Xiong Y.L., Tang J., Liu J. (2011). Effect of salicin on the oxidative stability and texture of myofibrillar proteins. J. Agric. Food Chem., 59: 10177–10183.
  159. Xu Q.D., Yu Z.L., Zeng W.C. (2021). Structural and functional modifications of myofibrillar protein by natural phenolic compounds and their application in pork meatball. Food Res. Int., 148: 110593.
  160. Yadav M.K., Chae S.W., Im G.J., Chung J.W., Song J.J. (2015). Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE, 10: e0119564.
  161. Yan M., Li B., Zhao X., Yi J. (2011). Physicochemical properties of gelatin gels from walleye pollock (Theragra chalcogramma) skin cross-linked by gallic acid and rutin. Food Hydrocoll., 25: 907–914.
  162. Yostawonkul J., Nittayasut N., Phasuk A., Junchay R., Boonrungsiman S., Temisak S., Kongsema M., Phoolcharoen W., Yata T. (2021). Nano/microstructured hybrid composite particles containing cinnamon oil as an antibiotic alternative against food-borne pathogens. J. Food Eng., 290: 110209.
  163. Zagoskina N.V., Zubova M.Y., Nechaeva T.L., Kazantseva V.V., Goncharuk E.A., Katanskaya V.M., Baranova E.N., Aksenova M.A. (2023). Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications. Int. J. Mol. Sci., 24: 13874.
  164. Zhang Y., Wang S. (2016). Esculin as an effective antioxidant for meat proteins. J. Sci. Food Agric., 96: 1364–1370.
  165. Zhao W., Li X. (2019). Hesperidin’s protective effects on protein denaturation under oxidative stress. J. Agric. Food Chem., 67: 1660–1667.
  166. Zhao Y., Sun Z. (2017). Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int. J. Food Prop., 20(sup3): S2822–S2832.
  167. Zhang J., Zhou F., Wu X., Zhang X., Chen Y., Zha B.S., Niu F., Lu M., Hao G., Sun Y., Sun J., Peng Y., Wang G. (2012). Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20 (S)-ginsenoside Rh2 in MCF-7/Adr cells. Brit. J. Pharmacol., 165: 120–134.
  168. Zhou X., Chen T., Lin H., Chen H., Liu J., Lyu F., Ding Y. (2019). Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols. Food Hydrocoll., 90: 82–89.
  169. Zorić N., Kosalec I. (2022). The antimicrobial activities of oleuropein and hydroxytyrosol. In: Promising antimicrobials from natural products. Cham: Springer International Publishing, pp. 75–89.
DOI: https://doi.org/10.2478/aoas-2024-0114 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 967 - 980
Submitted on: Jul 8, 2024
|
Accepted on: Oct 16, 2024
|
Published on: Jul 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Katarzyna Leicht, Charles Odilichukwu R. Okpala, Małgorzata Korzeniowska, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.