References
- Abd El-Aziz Y.M., Jaber F.A., Nass N.M., Awlya O.F., Abusudah W.F., Qadhi A.H., Redhwan A., Eissa E.H., Dighiesh H.S. (2024). Strengthening growth, digestion, body composition, haemato-biochemical indices, gene expression, and resistance to Fusarium oxysporum infection and histological structure in Oreochromis niloticus by using fructooligosaccharides and β-1, 3 glucan mixture. Aquacult. Int., 32: 7487–7508.
- Abd El-Hakim Y.M., El-Houseiny W., Abd Elhakeem E.M., Ebraheim L.L., Moustafa A.A., Mohamed A.A.R. (2020). Melamine and curcumin enriched diets modulate the haemato-immune response, growth performance, oxidative stress, disease resistance, and cytokine production in Oreochromis niloticus. Aquat. Toxicol., 220: 105406.
- Abdel-Tawwab M., Shukry M., Farrag F.A, El-Shafai N.M., Dawood M.A.O., Abdel-Latif H.M.R. (2021). Dietary sodium butyrate nanoparticles enhanced growth, digestive enzyme activities, intestinal histomorphometry, and transcription of growth-related genes in Nile tilapia juveniles. Aquaculture, 536: 736467.
- Abdel-Tawwab M., Eissa E.S.H., Tawfik W.A., Abd Elnabi H.E., Saadony S., Bazina W.K., Ahmed R.A. (2022). Dietary curcumin nanoparticles promoted the performance, antioxidant activity, and humoral immunity, and modulated the hepatic and intestinal histology of Nile tilapia fingerlings. Fish Physiol. Biochem., 48: 585–601.
- Ahmed R.A., Jastaniah S.D., Alaidaroos B.A., Shafi M.E., El-Haroun E., Abd El-Aziz Y.M., Abd El Megeed O.H., AL-Qurashi M.M., Bahshwan S.M.A., Munir M.B., Kari Z.A., Mathew R.T., Eissa M.E.H., Eissa E.H., Elfeky A. (2025). Effects of dietary Spirulina platensis supplementation on growth performance, whole body composition, antioxidant activity, histological alterations, and resistance to Vibrio parahaemolyticus in Pacific white shrimp, Litopenaeus vannamei. Aquacult. Rep., 40: 102606.
- Alagawany M., Farag M. R., Abdelnour S. A., Dawood M. A.O., Elnesr S.S., Dhama K. (2021). Curcumin and its different forms: A review on fish nutrition. Aquaculture, 532: 736030.
- AOAC (1995). Association of Official Analytical Chemists. Official methods of analysis, 16th ed. Arlington, VA.
- Bishayee A., Bhatia D., Thoppil R.J., Darvesh A.S., Nevo E., Lansky E.P. (2011). Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms. Carcinogenesis, 32: 888–896.
- Blazer V.S. (1992). Nutrition and disease resistance in fish. Ann. Rev. Fish Dis., 2: 309–323.
- Cao S.P., Zou T., Zhang P.Y., Han D., Jin J.Y., Liu H.K., Yang Y.X., Zhu X.M., Xie S.Q. (2018). Effects of dietary fishmeal replacement with Spirulina platensis on the growth, feed utilization, digestion and physiological parameters in juvenile gibel carp (Carassis auratus gibelio var. CAS III). Aquacult. Res., 49: 1320–1328.
- Chen S.J., Guo Y.C., Espe M., Yang F., Fang W.P., Wan M.G., Niu J. (2018). Growth performance, haematological parameters, antioxidant status and salinity stress tolerance of juvenile Pacific white shrimp (Litopenaeus vannamei) fed different levels of dietary myo-inositol. Aquacult. Nutr., 24: 1527–1539.
- Chotigeat W., Tongsupa S., Supamataya K., Phongdara A. (2004). Effect of fucoidan on disease resistance of black tiger shrimp. Aqua-culture, 233: 23–30.
- Cui H., Liu B., Ge X., Xieb J., Xub P., Miao L., Sun S. (2017). Effects of dietary curcumin on growth performance, biochemical parameters, HSP70 gene expression and resistance to Streptococcus iniae of juvenile gift tilapia, Oreochromis niloticus. Israeli J. Aquacult., 66: 986–996.
- Dighiesh H.S., Alharbi N.A., Awlya O.F., Alhassani W.E., Hassoubah S.A., Albaqami N.M., Aljahdali N., Abd El-Aziz Y.M., Eissa E.H., Munir M.B., Sakr S.E.S. (2024). Dietary multi-strains Bacillus spp. enhanced growth performance, blood metabolites, digestive tissues histology, gene expression of Oreochromis niloticus, and resistance to Aspergillus flavus infection. Aquacult. Int., 32: 7065–7086.
- Drury R.A.B., Wallington E.A. (1980). Bone and decalcification. Carleton’s Histological Technique, pp. 150–151.
- Eissa E.H.E., Abd El-Hamed N.N.B., Ahmed N.H., Badran M.F. (2022 a). Improvement the hatchery seed production strategy on embryonic development and larval growth performance and development stages of green tiger prawn, Penaeus semisulcatus using environmental aspects. Thalassas, 38: 1327–1338.
- Eissa E.H.E., Ahmed N.H., El-Badawi A.A., Munir M.B. (2022 b). Assessing the influence of the inclusion of Bacillus subtilis AQUA-GROW® as feed additive on the growth performance, feed utilization, immunological responses and body composition of the Pacific white shrimp, Litopenaeus vannamei. Aquacult. Res., 45: 128–115.
- Eissa E.H.E., Elsayed S.B., Alkhateib Y., Gaafar., Ashraf A., El-Badawi M. (2022 c). Assessing the influence of dietary Pediococcus acidilactici probiotic supplementation in the feed of European sea bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on farm water quality, growth, feed utilization, survival rate, body composition, blood biochemical parameters, and intestinal histology. Aquacult. Nutr., 45: 125–145.
- Eissa E.H.E., Ezzo O.H., Khalil H.S., Tawfik W.A., El-Badawi A.A., Abd Elghany N.A., Mossa M.I., Hassan M.M. (2022 d). The effect of dietary nanocurcumin on the growth performance, body composition, haemato-biochemical parameters and histopathological scores of the Nile tilapia (Oreochromis niloticus) challenged with Aspergillus flavus. Aquacult. Res., 1–14.
- Eissa E.H.E., Ahmed R.A., Abd Elghany N.A., Elfeky A., Saadony S. (2023 a). Potential symbiotic effects of β-1,3 glucan, and fructooligosaccharides on the growth performance, immune response, redox status, and resistance of Pacific white shrimp, Litopenaeus vannamei to Fusarium solani infection. Fishes, 8: 105–115.
- Eissa E.H.E., Alaidaroos B.A., Jastaniah S.D., Munir M.B., Shafi M.E. (2023 b). Dietary effects of nano curcumin on growth performances, body composition, blood parameters and histopathological alternation in red tilapia (Oreochromis sp.) challenged with Aspergillus flavus. Fishes, 8: 208–221.
- Eissa E.H.E., Awlya O.F., Abusudah W.F., Qadhi A.H., Abd El-Aziz Y.M., Rinthong P.O., Sakr S.E.S. (2024 a). Curcumin’s effects on growth indices, histological scores, blood metabolites, redox state, immunity, and antioxidant-related genes of red tilapia (Oreochromis sp.). Aquacult. Int., 1–16.
- Eissa E.H.E., Khattab M.S., Elbahnaswy S., Elshopakey G.E., Alamoudi M.O., Aljàrari R.M., Naiel M.A. (2024 b). The effects of dietary Spirulina platensis or curcumin nanoparticles on performance, body chemical composition, blood biochemical, digestive enzyme, antioxidant and immune activities of Oreochromis niloticus fingerlings. BMC Vet. Res., 20: 215.
- El-Barbary M.I. (2018). Impact of garlic and curcumin on the hepatic Effects of dietary curcumin NPs on white-leg shrimp challenged by Fusarium solani histology and cytochrome P450 gene expression of aflatoxicosis Oreochromis niloticus using RT-PCR. Turkish J. Fish. Aquat. Sci., 18: 405–415.
- Figueroa M., Hammond-Kosack K.E., Solomon P.S. (2018). A review of wheat diseases – a field perspective. Mol. Plant Pathol., 19: 1523–1536.
- Ghalandarlaki N., Alizadeh A.M., Ashkani-Esfahani S. (2014). Nanotechnology-applied curcumin for different diseases therapy. BioMed Res. Int., 394264.
- Hendam B.M., Munir M. B., Eissa M.E., El-Haroun E., van Doan H. (2023). Effects of water additive probiotic, Pediococcus acidilactici on growth performance, feed utilization, hematology, gene expression and disease resistance against Aspergillus flavus of Nile tilapia (Oreochromis niloticus). Anim. Feed Sci. Technol., 115696.
- Jastaniah S.D., Mansour A.A., Al-Tarawni A.H., El-Haroun E., Munir M.B., Saghir S.A.M., Eissa E.S.H. (2024). The effects of nanocurcumin on growth performance, feed utilization, blood biochemistry, disease resistance, and gene expression in European seabass (Dicentrarchus labrax) fingerlings. Aquacult. Rep., 36: 102034.
- Jiang J., Wu X., Zhou X., Feng L., Liu Y., Jiang W. (2016). Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus. Aquaculture, 463: 174–180.
- Kakran M., Sahoo N.G., Tan I., Li L. (2012). Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J. Nanopart. Res. Arch., 14: 757.
- Khanjani M.H., Sajjadi M.M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian J. Fish. Sci., 15: 1465–1484.
- Kohshahi A.J., Sourinejad I., Sarkheil M., Johari S.A. (2019). Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): Influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 45: 793–804.
- Li C., Li N., Dong T., Fu Q., Cui Y., Li Y. (2020). Analysis of differential gene expression in Litopenaeus vannamei under high salinity stress. Aquacult. Rep., 18: 100423.
- Mahmoud H.K., Al-Sagheer A.A., Reda F.M., Mahgoub S.A., Ayyat M.S. (2017). Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture, 475: 16–23.
- Manju M., Akbarsha M.A., Oommen O.V. (2012). In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiol. Biochem., 38: 309–318.
- McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.
- Mendes R., Cardoso C., Pestana C. (2009). Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem., 112: 1038–1045.
- Moaheda E.H.E., Alaryani F.S., Elbahnaswy S., Khattab M.S., Elfeky A., AbouelFadl K.Y., Eissa E.H., Ragaa A.A., Doan H.V., El-Haroun H. (2023). Dietary inclusion of Pediococcus acidilactici probiotic promoted the growth indices, hemato-biochemical indices, enzymatic profile, intestinal and liver histomorphology, and resistance of Nile tilapia against Aspergillus flavus. Anim. Feed Sci. Technol., 306: 115814.
- Moghadam H., Sourinejad I., Johari S.A. (2021). Growth performance, haemato-immunological responses and antioxidant status of Pacific white shrimp Penaeus vannamei fed with turmeric powder, curcumin and curcumin nanomicelles. Aquacult. Nutr., 27: 2294–2306.
- Mohamed A.A., El-Houseiny W., El-Murr A., Ebraheim L.L.M., Ahmed A.I., Abd El-Hakim Y. (2020). Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Safe., 188: 109890.
- Moniruzzaman M., Min T. (2020). Curcumin, curcumin nanoparticles and curcumin nanospheres: A review on their pharmacodynamics based on monogastric farm animal. Poult. Fish Nutr. Pharmac., 12: 447.
- Montoya A., López-Olmeda J.F., Yúfera M., Sánchez-Muros M.J., Sánchez-Vázquez F.J. (2010). Feeding time synchronises daily rhythms of behaviour and digestive physiology in gilthead seabream (Sparus aurata). Aquaculture, 306: 315–321.
- Morris S.M., Albright J.T. (1981). Superoxide dismutase, catalase, and glutathione peroxidase in the swim bladder of the physoclistous fish, Opsanus tau L. Cell Tissue Res., 220: 739–752.
- Moretti A., Logrieco A.F., Susca A. (2017). Mycotoxins: an underhand food problem. In: Mycotoxigenic fungi: methods and protocols, Moretti A., Susca A. (eds). Springer, New York, pp. 3–12.
- Moskaug J.Ø., Carlsen H., Myhrstad M.C., Blomhoff R. (2005). Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr., 81: 277S–283S.
- Nakano M.M., Corbell N., Besson J., Zuber P. (1992). Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. General Genet. MGG, 232: 313–321.
- Okon E.M., Birikorang H.N., Munir M.B., Kari Z.A., Téllez-Isaías G., Khalifa N.E., Abdelnour S.A., Eissa M.E.H., Al-Farga A., Dighiesh H.S., Eissa E.S.H. (2023). A global analysis of climate change and the impacts on oyster diseases. Sustainability, 15: 12775.
- NRC (2011). Nutrient requirements of fish and shrimp. National Academies Press. Washington D.C., USA.
- Qi-Cun Z., Zhou J., Chi S., Yang Q., Liu C. (2007). Effect of dietary lipid level on growth performance, feed utilization and digestive enzyme of juvenile ivory shell, Babylonia Areolate. Aquaculture, 272: 535–540.
- Rastiannasab A., Afsharmanesh S., Rahimi R., Sharifian I. (2016). Alternations in the liver enzymatic activity of common carp, Cyprinus carpio in response to parasites, Dactylogyrus spp. and Gyro-dactylus spp. J. Parasit., 40: 1146–1149.
- Rice E.W., Baird R.B., Eaton A.D., Clesceri L.S. (2012). Standard methods for the examination of water and wastewater.
- Sarkheil M., Sourinejad I., Mirbakhsh M., Kordestani D., Johari S.A. (2017). Antibacterial activity of immobilized silver nanoparticles on TEPA-Den-SiO2 against shrimp pathogen, Vibrio sp. Persian1. Aquacult. Res., 48: 2120–2132.
- Summerell B.A. (2019). Resolving Fusarium: current status of the genus. Ann. Rev. Phytopathol., 57: 323–339.
- Watanuki H., Chakraborty G., Korenaga H., Kono T. (2009) Immunostimulatory effects of natural human interferon-alpha (huIFN-a) on carps Cyprinus carpio L. Vet. Immunol. Immunopathol., 131: 273–277.
- Xu X.Y., Meng X., Li S., Gan R.Y., Li H.B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10: 1553.
- Yonar M.E. (2018). Chlorpyrifos-induced biochemical changes in Cyprinus carpio: Ameliorative effect of curcumin. Ecotoxicol. Environ. Safe., 151: 49–54.
- Yonar M.E., Mişe Y.S., İspir Ü., Ural M. (2019). Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. Fish Shellfish Immunol., 89: 83–90.