References
- Adámková A., Mlček J., Adámek M., Borkovcová M., Bednářová M., Hlobilová V., Knížková I., Juríková T. (2020). Tenebrio molitor (Coleoptera: Tenebrionidae) – Optimization of rearing conditions to obtain desired nutritional values. J. Insect Sci., 20: 24.
- Ademolu K., Idowu A., Olatunde G. (2010). Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during post-embryonic development. Afr. Entomol., 18: 360–364.
- Ahmad R.S., Imran A., Hussain M.B. (2018). Nutritional composition of meat. Meat Sci. Nutr., 61.
- Ahmed I., Fatma İ., Roshan R. (2022). Insects usage in pets food. Vet. Hekimler Derneği Dergisi, 93: 87–98.
- Akhtar Y., Isman M.B. (2018). Insects as an alternative protein source. In: Proteins in Food Processing. Elsevier.
- Alagawany M., Elnesr S.S., Farag M.R., El-Sabrout K., Alqaisi O., Dawood M.A., Soomro H., Abdelnour S.A. (2022). Nutritional significance and health benefits of omega-3,-6 and-9 fatty acids in animals. Anim. Biotechnol., 33: 1678–1690.
- Alegbeleye W.O., Obasa S.O., Olude O.O., Otubu K., Jimoh W. (2012). Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquacult. Res., 43: 412–420.
- Alexander P., Rounsevell M.D., Dislich C., Dodson J.R., Engström K., Moran D. (2015). Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Global Environ. Change, 35: 138–147.
- Amobi M., Saleh A., Okpoko V., Abdullahi A. (2020). Growth performance of broiler chickens based on grasshopper meal inclusions in feed formulation. Zoologist, 18: 39–43.
- Arshad M.S. (2018). Meat Science and Nutrition. IntechOpen. Babayi H., Olayemi I.K., Fadipe L.A., Baba M.B., Sadiku J.O. (2018). Mineral nutrient profile of grasshopper (Zonocerus variegatus) subjected to different conventional post-harvest processing techniques, IJABR, 9: 152–165.
- Baker M.A., Shin J.T., Kim Y.W. (2016). An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychol. Market., 33: 94–112.
- Belluco S., Losasso C., Maggioletti M., Alonzi C.C., Paoletti M.G., Ricci A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comp. Rev. Food Sci. Food Safety, 12: 296–313.
- Blásquez J.R.-E., Moreno J.M.P., Camacho V.H.M. (2012). Could grasshoppers be a nutritive meal Food Nutr. Sci., 3: 164–175.
- Boulos S., Tännler A., Nyström L. (2020). Nitrogen-to-protein conversion factors for edible insects on the Swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr., 7: 89.
- Brogan E.N. (2018) Protein and lipid characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria dry flours. West Virginia University.
- Brogan E.N., Park Y.-L., Matak K.E., Jaczynski J. (2021). Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. LWT, 152: 112314.
- Cao H., Luo Q., Wang H., Liu Z., Li G., Liu J. (2019). Structural characterization of peptides from Locusta migratoria manilensis (Meyen, 1835) and anti-aging effect in Caenorhabditis elegans. RSC Adv., 9: 9289–9300.
- Cerritos R. (2011). Grasshoppers in agrosystems: pest or food? CABI Rev., 6.
- Cerritos-Flores R., Ponce-Reyes R., Rojas-García F. (2015). Exploiting a pest insect species Sphenarium purpurascens for human consumption: Ecological, social, and economic repercussions. J. Insects Food Feed, 1: 75–84.
- Cheseto X., Kuate S.P., Tchouassi D.P., Ndung’u M., Teal P.E., Torto B. (2015). Potential of the desert locust Schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PLoS One, 10: e0127171.
- Clarkson C., Mirosa M., Birch J. (2018). Potential of extracted Locusta migratoria protein fractions as value-added ingredients. Insects, 9: 20.
- Costa-Neto E.M., Dunkel F. (2016). Insects as food: history, culture, and modern use around the world. Insects as sustainable food ingredients. Elsevier.
- Cruz-López S.O., Álvarez-Cisneros Y.M., Domínguez-Soberanes J., Escalona-Buendía H.B., Sánchez C.N. (2022). Physicochemical and sensory characteristics of sausages made with grasshopper (Sphenarium purpurascens) flour. Foods, 11: 704.
- Cuj-Laines R., Hernández-Santos B., Reyes-Jaquez D., Delgado-Licon E., Juárez-Barrientos J.M., Rodríguez-Miranda J. (2018). Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int. J. Food Sci. Technol., 53: 1889–1895.
- Das M., Mandal S.K. (2014). Oxya hyla hyla (Orthoptera: Acrididae) as an alternative protein source for Japanese quail. Int. Scholar. Res. Not., 2014.
- Dewi T., Vidiarti A., Fitranti D., Kurniawati D., Anjani G. (2020). Formulation of baby biscuits with substitution of wood grasshopper flour (Melanoplus cinereus) as an alternative complementary food for children. Food Res., 4: 114–122.
- Dorgbetor I.K., Ondrasek G., Kutnjak H., Mikuš O. (2022). What if the world went vegan? A review of the impact on natural resources, climate change, and economies. Agriculture, 12: 1518.
- Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. (2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.
- European Commission (2022). Delivering the European Green Deal – Striving to be the first climate-neutral continent.
- Evans J., Alemu M.H., Flore R., Frøst M.B., Halloran A., Jensen A.B., Maciel-Vergara G., Meyer-Rochow V.B., Münke-Svendsen C., Olsen S.B. (2015). ‘Entomophagy’: an evolving terminology in need of review. J. Insects Food Feed, 1: 293–305.
- FAO (2019). Government of Kenya. Kenya Food Composition Tables, 2018. Nairobi, Kenya,: Kenya Food Composition Food & Agriculture Organization.
- FAOLEX Database (2019). FAO: Insect Industry Promotion and Support Act. 19-02-2020 ed.
- Finke M.D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol., 21: 269–285.
- Finke M., Ooninex D. (2014). Insects as food for insectivores: In: Mass Production of Beneficial Organisms, Invertebrates and Entomo-pathogens, Morales-Ramos J.A., Rojas M.G., Shapiro-llan D.I. (eds). San Diego, CA, USA, Academic Press.
- Finke M.D., DeFoliart G.R., Benevenga N.J. (1989). Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr., 119: 864–871.
- Fombong F.T., Van Der Borght M., Vanden Broeck J. (2017). Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects, 8: 102.
- Fombong F.T., Kinyuru J., Ng’ang’a J., Ayieko M., Tanga C.M., Vanden Broeck J., Van Der Borght M. (2021). Affordable processing of edible orthopterans provides a highly nutritive source of food ingredients. Foods, 10: 144.
- Ghosh S., Mandal D.K. (2019). Nutritional evaluation of a short-horned grasshopper’ Oxya hyla hyla (Serville) meal as a substitute of fishmeal in the compound diets of rohu, Labeo rohita (Hamilton). J. Basic Appl. Zool., 80: 1–8.
- Gilbert B.M., Avenant-Oldewage A. (2018). Trace element biomineralisation in the carapace in male and female Argulus japonicus. Plos One, 13: e0197804.
- Gravel A., Doyen A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol., 59: 102272.
- Guyomard H., Bouamra-Mechemache Z., Chatellier V., Delaby L., Détang-Dessendre C., Peyraud J.-L., Requillart V. (2021). Why and how to regulate animal production and consumption: The case of the European Union. Animal, 100283.
- Haber M., Mishyna M., Martinez J.I., Benjamin O. (2019). The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT, 115: 108395.
- Ibarra-Herrera C.C., Acosta-Estrada B., Chuck-Hernández C., Serra-no-Sandoval S.N., Guardado-Félix D., Pérez-Carrillo E. (2020). Nutritional content of edible grasshopper (Sphenarium purpurascens) fed on alfalfa (Medicago sativa) and maize (Zea mays). CyTA-J. Food, 18: 257–263.
- Jamroz D., Jakobsen K., Knudsen K.E.B., Wiliczkiewicz A., Orda J. (2002). Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 131: 657–668.
- Jha B., Leterme P. (2012). Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal, 6: 603–611.
- Jha R., Mishra P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J. Anim. Sci. Biotechnol., 12: 1–16.
- Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724–731.
- Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses J., Anandharamakrishnan C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl., 2: 100036.
- Kalala G., Kambashi B., Everaert N., Beckers Y., Richel A., Pachikian B., Neyrinck A.M., Delzenne N.M., Bindelle J. (2018). Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. Int. J. Food Sci. Nutr., 69: 682–689.
- Kaya M., Lelešius E., Nagrockaitė R., Sargin I., Arslan G., Mol A., Baran T., Can E., Bitim B. (2015). Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PloS One, 10: e0115531.
- Kelemu S., Niassy S., Torto B., Fiaboe K., Affognon H., Tonnang H., Maniania N., Ekesi S. (2015). African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed, 1: 103–119.
- Khalil R.M. (2013). Locust (Schistocerca gregaria) as an alternative source of protein compared with other conventional protein sources. Sudan University of Science and Technology.
- Kim J.W. (2019). Insect industry for future super foods. Food Sci. Anim. Res. Ind., 8: 74–77.
- Kinyuru J.N. (2021). Nutrient content and lipid characteristics of desert locust (Schistoscerca gregaria) swarm in Kenya. Int. J. Trop. Insect Sci., 41: 1993–1999.
- Kinyuru J.N., Kenji G., Muhoho S.N., Ayieko M. (2010). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. J. Agricult. Sci. Technol., 12: 32–46.
- Kipkoech C. (2023). Beyond proteins – edible insects as a source of dietary fiber. Polysaccharides, 4: 116–128.
- Kulma M., Tůmová V., Fialová A., Kouřimská L. (2020). Insect consumption in the Czech Republic: what the eye does not see, the heart does not grieve over. J. Insects Food Feed, 6: 525–535.
- Kulma M., Škvorová P., Petříčková D., Kouřimská L. (2023). A descriptive sensory evaluation of edible insects in Czechia: do the species and size matter? Int. J. Food Prop., 26: 218–230.
- Kuntadi K., Adalina Y., Maharani K.E. (2018). Nutritional compositions of six edible insects in Java. Indon. J. Fores. Res., 5: 57–68.
- Lawal K.G., Kavle R.R., Akanbi T.O., Mirosa M., Agyei D. (2021). Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods, 3: 100016.
- Legendre T.S., Baker M.A. (2022). Legitimizing edible insects for human consumption: The impacts of trust, risk–benefit, and purchase activism. J. Hospit. Tour. Res., 46: 467–489.
- Lehtovaara V., Valtonen A., Sorjonen J., Hiltunen M., Rutaro K., Malinga G., Nyeko P., Roininen H. (2017). The fatty acid contents of the edible grasshopper Ruspolia differens can be manipulated using artificial diets. J. Insects Food Feed, 3: 253–262.
- Lim S.M., Thien C.N., Toure A.K., Poh B.K. (2022). Factors influencing acceptance of grasshoppers and other insects as food: A comparison between two cities in Malaysia. Foods, 11: 3284.
- Mariod A.A., Mirghani M.E.S., Hussein I.H. (2017). Unconventional oilseeds and oil sources. Academic Press.
- Melo V., Garcia M., Sandoval H., Jiménez H.D., Calvo C. (2011). Quality proteins from edible indigenous insect food of Latin America and Asia. Emirates J. Food Agricult., 23: 283.
- Mishyna M., Martinez J.-J.I., Chen J., Benjamin O. (2019). Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int., 116: 697–706.
- Mitsuhashi J. (2016). Edible insects of the world. CRC Press. MOAFRA (2010). Control of Livestock and Fish Feed Act. South Korea.
- Nginya E., Ondiek J., King’ori A., Nduko J. (2019). Evaluation of grasshoppers as a protein source for improved indigenous chicken growers. Breast, 62: 0.45.
- Noyens I., Schoeters F., Van Peer M., Berrens S., Goossens S., Van Miert S. (2023). The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams. Sci. Rep., 13: 11604.
- Ojha S., Bekhit A.E.-D., Grune T., Schlüter O.K. (2021). Bioavail-ability of nutrients from edible insects. Curr. Opin. Food Sci., 41: 240–248.
- Oonincx D., Finke M. (2021). Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed, 7: 639–659.
- Paul A., Frederich M., Uyttenbroeck R., Hatt S., Malik P., Lebecque S., Hamaidia M., Miazek K., Goffin D., Willems L. (2016). Grass-hoppers as a food source? A review. Biotechnol. Agronom. Soc. Environ., 20.
- Peng W., Ma N.L., Zhang D., Zhou Q., Yue X., Khoo S.C., Yang H., Guan R., Chen H., Zhang X. (2020). A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environ. Res., 191: 110046.
- Pieper R., Jha R., Rossnagel B., Van Kessel A.G., Souffrant W.B., Leterme P. (2008). Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiol. Ecol., 66: 556–566.
- Poma G., Cuykx M., Amato E., Calaprice C., Focant J.F., Covaci A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol., 100: 70–79.
- Porusia M., Rauf R., Haryani F. (2020). Nutritional value of grasshopper and cricket cooked with different methods. Euras. J. Biosci., 14.
- Purschke B., Tanzmeister H., Meinlschmidt P., Baumgartner S., Lauter K., Jäger H. (2018). Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res. Int., 106: 271–279.
- Raksakantong P., Meeso N., Kubola J., Siriamornpun S. (2010). Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res. Int., 43: 350–355.
- Reyes-Herrera A., Pérez-Carrillo E., Amador-Espejo G., Valdivia-Nájar G., Ibarra-Herrera C.C. (2022). Changes in the chemical composition of edible grasshoppers (Sphenarium purpurascens) fed exclusively with soy sprouts or maize leaves. Insects, 13: 510.
- Rodríguez-Miranda J., Alcántar-Vázquez J.P., Zúñiga-Marroquín T., Juárez-Barrientos J.M. (2019). Insects as an alternative source of protein: A review of the potential use of grasshopper (Sphenarium purpurascens Ch.) as a food ingredient. Europ. Food Res. Technol., 245: 2613–2620.
- Ruiz V.M., Sandoval-Trujillo H., Quirino-Barreda T., Sánchez-Herrera K., Díaz-García R., Calvo-Carrillo C. (2015). Chemical composition and amino acids content of five species of edible grasshoppers from Mexico. Emirates J. Food Agricult., 27: 654–658.
- Rumpold B.A., Schlüter O.K. (2013 a). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.
- Rumpold B.A., Schlüter O.K. (2013 b). Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol., 17: 1–11.
- Rutaro K., Malinga G.M., Lehtovaara V.J., Opoke R., Valtonen A., Kwetegyeka J., Nyeko P., Roininen H. (2018). The fatty acid composition of edible grasshopper Ruspolia differens (Serville) (Orthoptera: Tettigoniidae) feeding on diversifying diets of host plants. Entomol. Res., 48: 490–498.
- Salama S.M. (2020). Nutrient composition and bioactive components of the migratory locust (Locusta migratoria). African edible insects as alternative source of food, oil, protein and bioactive components. Springer.
- Sánchez-Muros M.-J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod., 65: 16–27.
- Shabo E.P., Owaga E., Kinyuru J. (2022). Physico-chemical characterization, acceptability and shelf stability of extruded composite flour enriched with long-horned grasshopper (Ruspolia differens). J. Agricult. Sci. Technol., 21: 4–32.
- Shahidi F., Arachchi J.K.V., Jeon Y.-J. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol., 10: 37–51.
- Siddiqui S.A., Brunner T.A., Tamm I., van der Raad P., Patekar G., Bahmid N.A., Aarts K., Paul A. (2023). Insect-based dog and cat food: A short investigative review on market, claims and consumer perception. J. Asia-Pacific Entomol., 26: 102020.
- Siriamornpun S., Thammapat P. (2008). Insects as a delicacy and a nutritious food in Thailand. In: Using Food Science and Technology to Improve Nutrition and Promote National Development, 16: 16.
- Skotnicka M., Karwowska K., Kłobukowski F., Borkowska A., Pieszko M. (2021). Possibilities of the development of edible insect-based foods in Europe. Foods, 10: 766.
- Soetan K., Olaiya C., Oyewole O. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4: 200–222.
- Ssepuuya G., Nakimbugwe D., De Winne A., Smets R., Claes J., Van Der Borght M. (2020). Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspolia differens serville. Food Res. Int., 129: 108831.
- Stargrove M.B., Treasure J., McKee D. (2008). Herb, nutrient, and drug interactions. Missouri: Mosby Elsevier.
- Steinfeld H., Gerber P., Wassenaar T.D., Castel V., Rosales M., Rosales M., de Haan C. (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization.
- Sun-Waterhouse D., Waterhouse G.I., You L., Zhang J., Liu Y., Ma L., Gao J., Dong Y. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Res. Int., 89: 129–151.
- Tomiyama J.-M., Takagi D., Kantar M.B. (2020). The effect of acute and chronic food shortage on human population equilibrium in a subsistence setting. Agricult. Food Sec., 9: 1–12.
- Torruco-Uco J.G., Hernández-Santos B., Herman-Lara E., Martínez-Sánchez C.E., Juárez-Barrientos J.M., Rodríguez-Miranda J. (2019). Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Europ. Food Res. Technol., 245: 285–292.
- van Dijk M., Morley T., Rau M.L., Saghai Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food, 2: 494–501.
- Van Huis A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. J. Insects Food Feed, 6: 27–44.
- Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations.
- Varel V., Yen J.T. (1997). Microbial perspective on fiber utilization by swine. J. Anim. Sci., 75: 2715–2722.
- Virginia M.-R., Quirino-Barreda T., García-Núñez M., Díaz-García R., Sánchez-Herrera K., Schettino-Bermudez B. (2015). Grasshoppers Sphenarium purpurascens Ch. Source of proteins and essential amino acids. J. Chem. Chem. Eng., 9: 472–476.
- Wambui V., Nyambaka H., Kimiywe J., Tanga C. (2022). Processing techniques affects the vitamin quality of edible insects – potential for use in complementary foods. Int. Res. J. Pure Appl. Chem., 23: 35–46.
- Wood J., Enser M., Fisher A., Nute G., Sheard P., Richardson R., Hughes S., Whittington F. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Sci., 78: 343–358.
- Wu G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37: 1–17.
- Wu G., Bazer F.W., Dai Z., Li D., Wang J., Wu Z. (2014). Amino acid nutrition in animals: protein synthesis and beyond. Ann. Rev. Anim. Biosci., 2: 387–417.
- Yhoung-Aree J. (2010). Edible insects in Thailand: nutritional values and health concerns. Edible Forest Insects, pp. 201–216.
- Zamudio-Flores P.B., Hernández-Gonzaléz M., García-Cano V. (2019). Food supplements from a grasshopper: A developmental stage-wise evaluation of amino acid profile, protein and vitamins in Brachystola magna (Girard). Emirates J. Food Agricult., pp. 561–568.
- Zielińska E., Baraniak B., Karaś M., Rybczyńska K., Jakubczyk A. (2015). Selected species of edible insects as a source of nutrient composition. Food Res. Int., 77: 460–466.