Have a personal or library account? Click to login
Nutritional and Sustainability Aspects of Algae and Fungi Sources in Seafood Analogs – A Review Cover

Nutritional and Sustainability Aspects of Algae and Fungi Sources in Seafood Analogs – A Review

Open Access
|Apr 2025

References

  1. Aasim M., Bakhsh A., Sameeullah M., Karataş M., Khawar KM. (2018). Aquatic plants as human food. In: Global Perspectives on Underutilized Crops. Springer, pp. 165–187.
  2. Akazawa N., Alvial A., Baloi A.P., Blanc P.-P., Brummett R.E., Burgos J.M., Chamberlain G.C., Chamberlain G.W., Forster J., Hao N.V., Ibarra R., Josue L., Le K.V., Kibenge F., Lightner D.V., Loc T.H., Nikuli H.L., Omar I., Ralaimarindaza R.M, .St-Hilaire S., Towner R., Tung H., Villarreal M., Wyk P.M.V. (2014). Reducing disease risk in aquaculture. Agriculture and environmental services discussion paper no. 9, Washington, D.C.: World Bank Group.
  3. Akita Y., Kurihara T., Uehara M., Shiwa T., Iwai K. (2022). Impacts of overfishing and sedimentation on the feeding behavior and ecological function of herbivorous fishes in coral reefs. Mar. Ecol. Prog. Ser., 686: 141–157.
  4. Appenroth K.J., Sowjanya Sree K., Bog M., Ecker J., Seeliger C., Böhm V., Lorkowski S., Sommer K., Vetter W., Tolzin-Banasch K., Kirmse R., Leiterer M., Dawczynski C., Liebisch G., Jahreis G. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem., 6: 362603.
  5. Azoff M. (2021). Alternative seafood. State of the Industry Report. GFI. https://gfi.org/resource/alternative-seafood-state-of-the-industry-report/. Accessed May 25, 2024.
  6. Bhadury P., Mohammad B.T., Wright P.C. (2006). The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol., 33: 325–325.
  7. Bizzaro G., Vatland A.K., Pampanin D.M. (2022). The One-Health approach in seaweed food production. Environ Int., 158: 106948.
  8. Bomkamp C., Skaalure S.C., Fernando G.F., Ben-Arye T., Swartz E.W., Specht E.A. (2022). Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges. Advanced Sci., 9: 2102908.
  9. Boukid F., Baune M.C., Gagaoua M., Castellari M. (2022). Seafood alternatives: assessing the nutritional profile of products sold in the global market. Europ. Food Res. Technol., 248: 1777–1786.
  10. Boukid F., Kumari S., Khan Z.S. (2023). Plant protein-based foods, trend from a business perspective: market, consumers’ challenges, and opportunities in future. In: Novel Plant Protein Processing: Developing the Foods of the Future, CRC Press, pp. 267–282.
  11. Caballero S., Li Y.O., McClements D.J., Davidov-Pardo G. (2022). Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit. Rev. Food Sci. Nutr., 62: 8028–8044.
  12. Cai J., Lovatelli A., Aguilar-Manjarrez J., Cornish L., Dabbadie L., Desrochers A., Diffey S., Garrido Gamarro E., Geehan J., Hurtado A., Lucente D., Mair G., Miao W., Potin P., Przybyla C., Reantaso M., Roubach R., Tauati M., Yuan X. (2021). Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular, 1229, Rome, FAO.
  13. Calabon M.S., Jones E.B.G., Pang K.L., Abdel-Wahab M.A., Jin J., Devadatha B., Sadaba R.B., Apurillo C.C., Hyde K.D. (2023). Updates on the classification and numbers of marine fungi. Botanica Marina, 66: 213–238.
  14. Chan P.T., Matanjun P. (2017). Chemical composition and physico-chemical properties of tropical red seaweed, Gracilaria changii. Food Chem., 221: 302–310.
  15. Charoensiddhi S., Conlon M.A., Franco C.M.M., Zhang W. (2017). The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol., 70: 20–33.
  16. Chen G., Li Y., Wang J. (2021). Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere, 274: 129989.
  17. Choudhury D., Singh S., Seah J.S.H., Yeo D.C.L., Tan L.P. (2020). Commercialization of plant-based meat alternatives. Trends Plant Sci., 25: 1055–1058.
  18. Clausen R., York R. (2008). Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences. Soc. Sci. Res., 37: 1310–1320.
  19. Coleman B., Van Poucke C., Dewitte B., Ruttens A., Moerdijk-Poortvliet T., Latsos C., De Reu K., Blommaert L., Duquenne B., Timmermans K., van Houcke J., Muylaert K., Robbens J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods, 5: 100139.
  20. Denis C., Morançais M., Li M., Deniaud E., Gaudin P., Wielgosz-Collin G., Barnathan G., Jaouen P., Fleurence J. (2010). Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem., 119: 913–917.
  21. Deshmukh S.K., Prakash V., Ranjan N. (2018). Marine fungi: A source of potential anticancer compounds. Front. Microbiol., 8: 274495.
  22. Devi P., Shridhar M.P.D., D’Souza L., Naik C.G. (2006). Cellular fatty acid composition of marine-derived fungi. Indian. J. Mar. Sci., 35: 359–363.
  23. DeWeerdt S. (2020). Can aquaculture overcome its sustainability challenges? Nature, 588: S60–S60.
  24. FAO (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. FAO, Rome.
  25. Farmery A.K., Gardner C., Jennings S., Green B.S., Watson R.A. (2017). Assessing the inclusion of seafood in the sustainable diet literature. Fish Fisher., 18: 607–618.
  26. Freitas J., Vaz-Pires P., Câmara J.S. (2020). From aquaculture production to consumption: Freshness, safety, traceability and authentication, the four pillars of quality. Aquaculture, 518: 734857.
  27. García-Poza S., Leandro A., Cotas C., Cotas J., Marques J.C., Pereira L., Gonçalves A.M.M. (2020). The evolution road of seaweed aquaculture: cultivation technologies and the industry 4.0. Int. J. Environ. Res. Public Health., 17: 6528.
  28. Ghazani S.M., Marangoni A.G. (2022). Microbial lipids for foods. Trends Food Sci. Technol., 119: 593–607.
  29. Gomes N.G.M., Lefranc F., Kijjoa A., Kiss R. (2015). Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs., 13: 3950–3991.
  30. Gómez S., Maynou F. (2021). Alternative seafood marketing systems foster transformative processes in Mediterranean fisheries. Mar. Policy., 127: 104432.
  31. Hao H., Fu M., Yan R., He B., Li M., Liu Q., Cai Y., Zhang X., Huang R. (2019). Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agric. Immunol., 30: 937–954.
  32. Hibbert L.E., Qian Y., Smith H.K., Milner S., Katz E., Kliebenstein D.J., Taylor G. (2023). Making watercress (Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. Front Plant Sci., 14: 1279823.
  33. Inoue N., Tsuge K., Yanagita T., Oikawa A., Nagao K. (2024). Time-course metabolomic analysis: Production of betaine structural analogs by fungal fermentation of seaweed. Metabolites, 14: 201.
  34. Issifu I., Alava J.J., Lam V.W.Y., Sumaila U.R. (2022). Impact of ocean warming, overfishing and mercury on European fisheries: A risk assessment and policy solution framework. Front. Mar. Sci., 8: 770805.
  35. James R., Vignesh S., Muthukumar K. (2012). Marine drugs development and social implication. Coastal environments: Focus on Asian regions. Springer, Dordrecht, pp. 219–237.
  36. Karwacka M., Ciurzyńska A., Lenart A., Janowicz M. (2020). Sustainable development in the agri-food sector in terms of the carbon footprint: A review. Sustainability, 12: 6463.
  37. Kassam A. (2021). The rice of the sea: how a tiny grain could change the way humanity eats. Plants. The Guardian. https://www.the-guardian.com/environment/2021/apr/09/sea-rice-eelgrass-marine-grain-chef-angel-leon-marsh-climate-crisis. Accessed May 25, 2024.
  38. Kaur S., Reddersen B. (2022). Algae based solutions for polluted environments to restore ecosphere equilibrium. Int. J. Environ. Pollut. Remediat., 10: 09–18.
  39. Kazir M., Livney Y.D. (2021). Plant-based seafood analogs. Molecules, 26: 1559.
  40. Khan A.S. (2012). Understanding global supply chains and seafood markets for the rebuilding prospects of Northern Gulf cod fisheries. Sustainability, 4: 2946–2969.
  41. Kinley R.D., Martinez-Fernandez G., Matthews M.K., de Nys R., Magnusson M., Tomkins N.W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean Prod., 259: 120836.
  42. Koch J., Frommeyer B., Schewe G. (2020). Online shopping motives during the COVID-19 pandemic – Lessons from the crisis. Sustainability, 12: 10247.
  43. Koehn J.Z., Allison E.H., Golden C.D., Hilborn R. (2022). The role of seafood in sustainable diets. Environ. Res. Lett., 17: 035003.
  44. Kumari P., Kumar M., Gupta V., Reddy C.R.K., Jha B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem., 120: 749–757.
  45. Lankatillake C., Dias D., Huynh T. (2023). Plant-based imitated fish. In: Engineering Plant-Based Food Systems. Academic Press, pp. 185–197.
  46. Lee H., Kim D., Choi K.H., Lee S., Jo M., Chun S.Y., Son Y., Lee J.H., Kim K., Lee T.B., Keum J., Yoon M., Cha H.J., Rho S., Cho S.C., Lee Y.S. (2024). Animal-free scaffold from brown algae provides a three-dimensional cell growth and differentiation environment for steak-like cultivated meat. Food Hydrocoll., 152: 109944.
  47. Li L., Teixeira D.S., Jaime A., Cao B. (2007). Aquatic vegetable production and research in China. The Asian and Australasian Journal of Plant Science and Biotechnology. Global Science Books, 1: 37–42.
  48. Li Y., Xiang N., Zhu Y., Yang M., Shi C., Tang Y., Sun W., Sheng K., Liu D., Zhang X. (2024). Blue source-based food alternative proteins: Exploring aquatic plant-based and cell-based sources for sustainable nutrition. Trend. Food Sci. Technol., 147: 104439.
  49. Lorenzo J.M., Agregán R., Munekata P.E.S., Franco D., Carballo J., Şahin S., Lacomba R., Barba F.J. (2017). Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 15: 360.
  50. Mæhre H.K., Malde M.K., Eilertsen K.E., Elvevoll E.O. (2014). Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric., 94: 3281–3290.
  51. Mahdy A., Mendez L., Ballesteros M., González-Fernández C. (2014). Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag., 85: 551–557.
  52. Mahdy A., Mendez L., Tomás-Pejó E., del Mar Morales M., Ballesteros M., González-Fernández C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J. Chem. Technol. Biotechnol., 91: 1299–1305.
  53. Mahmud N., Valizadeh S., Oyom W., Tahergorabi R. (2024). Exploring functional plant-based seafood: Ingredients and health implications. Trend. Food Sci. Technol., 144: 104346.
  54. Malafronte L., Yilmaz-Turan S., Krona A., Martinez-Sanz M., Vilaplana F., Lopez-Sanchez P. (2021). Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll., 120: 106989.
  55. Marwaha N., Beveridge M.C., Phillips M.J., Komugisha Basiita R., Boso D., Yee Chan C., Ahmed Kabir K., Sulser T.B., Wiebe K. (2020). Alternative seafood: Assessing food, nutrition and livelihood futures of plant-based and cell-based seafood. WorldFish, Penang, Malaysia.
  56. Meng W., Mu T., Sun H., Garcia-Vaquero M. (2022). Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Res., 64: 102683.
  57. Mia M.M., Hasan M., Hasan M.A., Shahid Hossain M.A., Islam M.M., Hasan Saraf M.S. (2021). Discovery of mushroom-derived bioactive compound’s draggability against nsP3 macro domain, nsP2 protease and envelope glycoprotein of Chikungunya virus: An in silico approach. Inform. Med. Unlocked., 26: 100753.
  58. Mizuta D.D. (2024). Dietary shifts and the need for increased sustainability approaches in the global aquaculture seafood system. Front Sustain Food Syst., 8: 1356492.
  59. Montero L., Sánchez-Camargo A. del P., Ibáñez E., Gilbert-López B. (2017). Phenolic compounds from edible algae: Bioactivity and health benefits. Curr. Med. Chem., 25: 4808–4826.
  60. Mordor Intelligence (2024). Europe Seafood Market Size & Share Analysis – Industry Research Report. Growth Trends. https://www.mordorintelligence.com/industry-reports/europe-seafood-market. Accessed May 25, 2024.
  61. Nagao K., Inoue N., Tsuge K., Oikawa A., Kayashima T., Yanagita T. (2022). Dried and fermented powders of edible algae (Neopyropia yezoensis) attenuate hepatic steatosis in obese mice. Molecules, 27: 2640.
  62. Nguyen V.T., Ueng J.P., Tsai G.J. (2011). Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J. Food Sci., 76: C950–C958.
  63. Nowacka M., Trusinska M., Chraniuk P., Piatkowska J., Pakulska A., Wisniewska K., Wierzbicka A., Rybak K., Pobiega K. (2023). Plant-based fish analogs – a review. Appl. Sci., 13: 4509.
  64. Olsen S.O., Skallerud K., Heide M. (2021). Consumers’ evaluation and intention to buy traditional seafood: The role of vintage, uniqueness, nostalgia and involvement in luxury. Appetite, 157: 104994.
  65. On-Nom N., Promdang P., Inthachat W., Kanoongon P., Sahasakul Y., Chupeerach C., Suttisansanee U., Temviriyanukul P. (2023). Wolffia globosa-based nutritious snack formulation with high protein and dietary fiber contents. Foods, 12: 2647.
  66. Oucif H., Benaissa M., Ali Mehidi S., Prego R., Aubourg S.P., Abi-Ayad S.M.E.A. (2020). Chemical composition and nutritional value of different seaweeds from the west Algerian coast. J. Aquat. Food Prod. Technol., 29: 90–104.
  67. Peñalver R., Lorenzo J.M., Ros G., Amarowicz R., Pateiro M., Nieto G. (2020). Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs, 18: 301.
  68. Pereira L., Cotas J., Gonçalves A.M. (2024). Seaweed proteins: A step towards sustainability? Nutrients, 16: 1123.
  69. Pérez-Lloréns J.L., Brun F.G. (2023). “Sea rice”: From traditional culinary customs to sustainable crop for high-end gastronomy? Int. J. Gastron. Food Sci., 34: 100814.
  70. Pirwitz K., Rihko-Struckmann L., Sundmacher K. (2016). Valorization of the aqueous phase obtained from hydrothermally treated Dunaliella salina remnant biomass. Biores. Technol., 219: 64–71.
  71. Priyadarshani I., Rath B. (2012). Commercial and industrial applications of micro algae-A review. J. Algal Biomass Util., 3: 89–100. Purcell-Meyerink D., Packer M.A., Wheeler T.T., Hayes M., Franco
  72. Ruiz D., López-Pedrouso M., Lorenzo J.M. (2021). Aquaculture production of the brown seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in food and pharmaceuticals. Molecules, 26: 1306.
  73. Rodrigues D., Freitas A.C., Pereira L., Rocha-Santos T.A.P., Vasconcelos M.W., Roriz M., Rodríguez-Alcalá L.M., Gomes A.M.P., Duarte A.C. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem., 183: 197–207.
  74. Rohani-Ghadikolaei K., Abdulalian E., Ng W.K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol., 49: 774–780.
  75. Seghiri R., Kharbach M., Essamri A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual., 2019: 1–11.
  76. Stedt K., Trigo J.P., Steinhagen S., Nylund G.M., Forghani B., Pavia H., Undeland I. (2022). Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content. Algal. Res., 63: 102647.
  77. Tarver T. (2016). Palatable proteins for complex palates. Food Technol. Magaz., 70: 32–39.
  78. Tibbetts S.M., Milley J.E., Lall S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119.
  79. Uribe E., Vega-Gálvez A., García V., Pastén A., López J., Goñi G. (2019). Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Phycol., 31: 1967–1979.
  80. Véliz K., Toledo P., Araya M., Gómez M.F., Villalobos V., Tala F. (2023). Chemical composition and heavy metal content of Chilean seaweeds: Potential applications of seaweed meal as food and feed ingredients. Food Chem., 398: 133866.
  81. Wassmann B., Hartmann C., Siegrist M. (2024). Novel microalgae-based foods: What influences Singaporean consumers’ acceptance? Food. Qual. Prefer., 113: 105068.
  82. Xu J., Liao W., Liu Y., Guo Y., Jiang S., Zhao C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Prod. Process. Nutr., 5: 1–21.
  83. Zhang C., Tang X., Sheng L., Yang X. (2016). Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem., 18: 2542–2553.
  84. Zhang Z., Kobata K., Pham H., Kos D., Tan Y., Lu J., Mcclements D.J. (2022). Production of plant-based seafood: scallop analogs formed by enzymatic gelation of pea protein-pectin mixtures. Foods, 11: 851.
  85. Zhao L., Khang H.M., Du J. (2024). Incorporation of microalgae (Nannochloropsis oceanica) into plant-based fishcake analogue: Physical property characterisation and in vitro digestion analysis. Food Hydrocoll., 146: 109212.
DOI: https://doi.org/10.2478/aoas-2024-0072 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 417 - 428
Submitted on: May 25, 2024
Accepted on: Jun 7, 2024
Published on: Apr 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Atefeh Karimidastjerd, Zehra Gulsunoglu-Konuskan, Burcu Ersoy, Turgay Cetinkaya, Zakir Showkat Khan, Charles Odilichukwu R. Okpala, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.