Have a personal or library account? Click to login
The First Insights on Trans-Galactooligosaccharide Effects on Fatty Acids Profile and Microstructure of Muscle in Common Carp Cover

The First Insights on Trans-Galactooligosaccharide Effects on Fatty Acids Profile and Microstructure of Muscle in Common Carp

Open Access
|Feb 2022

References

  1. Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol., 45: 733–741.10.1016/j.fsi.2015.05.038
  2. Banerjee G., Ray A.K. (2017). Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis, 72: 1–11.10.1007/s13199-016-0441-8
  3. Biggs P., Parsons C.M., Fahey G.C. (2007). The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Sci., 86: 2327–2336.10.3382/ps.2007-00427
  4. Bogucka J., Miguel Ribeiro D., Da Costa R.P.R., Bednarczyk M. (2018). Effect of synbiotic dietary supplementation on histological and histopathological parameters of Pectoralis major muscle of broiler chickens. Czech. J. Anim. Sci., 63: 263–271.10.17221/103/2017-CJAS
  5. Bornet F.R.J., Brouns F., Tashiro Y., Duvillier V. (2002). Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig. Liver Dis., 34: 6111–6120.10.1016/S1590-8658(02)80177-3
  6. Cao H., Yu R., Zhang Y., Hu B., Jian S., Wen Ch., Kajbaf K., Kumar V., Yang G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508: 106–112.10.1016/j.aquaculture.2019.04.064
  7. Carani F.R., Da Silva Duran B.O., Gutierrez De Paula T., Pereira Piedade W., Dal-Pai-Silva M. (2013). Morphology and expression of genes related to skeletal muscle growth in juveniles of pirarucu (Arapaima gigas, Arapaimatidae, Teleostei). Acta Sci., Anim. Sci., 35: 219–226.10.4025/actascianimsci.v35i3.18219
  8. Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454: 243–251.10.1016/j.aquaculture.2015.12.033
  9. Delzenne N.M., Kok N. (2001). Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr., 73: 456S–458S.10.1093/ajcn/73.2.456s
  10. Delzenne N.M., Daubioul C., Neyrinck A., Lasa M., Taper H.S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Brit. J. Nutr., 87: 255–259.10.1079/BJNBJN/2002545
  11. De Silva S.S., Anderson T.A. (1995). Fish nutrition in aquaculture. Chapmann & Hall, London, 319 pp.
  12. Demigné C., Morand C., Levrat M., Besson C., Moundras C., Rémésy C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Brit. J. Nutr., 74: 209–219.10.1079/BJN19950124
  13. Dimitroglou A., Merrifield D.L., Spring P., Sweetman J., Moate R., Davies S.J. (2010). Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead seabream (Sparus aurata). Aquaculture, 300: 182–188.10.1016/j.aquaculture.2010.01.015
  14. Ebrahimi G., Ouraji H., Khalesi M., Sudagar M., Barari A., Zarei Dangesaraki M., Jani Khalili K. (2012). Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. J. Anim. Physiol. Anim. Nutr., 96: 591–599.10.1111/j.1439-0396.2011.01182.x
  15. FAO (2020). Fisheries and Aquaculture, National Aquaculture Sector Overview – Poland.
  16. Folch J., Lees M., Sloane-Stanley G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497–509.10.1016/S0021-9258(18)64849-5
  17. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., Verbeke K., Reid G. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491.10.1038/nrgastro.2017.75
  18. Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S.R., Thomas S.M., Toulmin C. (2010). Food security: the challenge of feeding billion people. Science, 327: 812–818.10.1126/science.1185383
  19. Grisdale-Helland B., Helland S., Gatlin D. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture, 283: 163–167.10.1016/j.aquaculture.2008.07.012
  20. Guerreiro I., Olivia-Teles A., Enes P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture, 441: 57–63.10.1016/j.aquaculture.2015.02.015
  21. Guerreiro I., Oliva-Teles A., Enes P. (2017 a). Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Rev. Aquacult., 10: 800–832.10.1111/raq.12201
  22. Guerreiro I., Serra C.R., Pousão-Ferreira P., Oliva-Teles A., Enes P. (2017 b). Prebiotics effect on growth performance, hepatic intermediary metabolism, gut microbiota and digestive enzymes of white sea bream (Diplodus sargus). Aquacult. Nutr., 24: 153–163.10.1111/anu.12543
  23. Guillen J., Natale F., Carvalho N., Casey J., Hofherr J., Druon J.-N., Martinsohn J.T. (2019). Global seafood consumption footprint. Ambio, 48: 111–122.10.1007/s13280-018-1060-9
  24. Harper C., Wolf J.C. (2009). Morphologic effects of the stress response in fish. ILAR J., 50: 387–396.10.1093/ilar.50.4.387
  25. Hocquette J.F., Gondret F., Baez E., Medale F., Jurie C., Pethick D.W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control and identification of putative markers. Animal, 4: 303–319.10.1017/S1751731109991091
  26. Hoffmann L., Mazurkiewicz J., Florczyk K., Burchardt H. (2017). Using probiotic feed supplements in carp rearing. Komunikaty Rybackie, 2: 14–21.
  27. Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci, 20: 579–598.10.2478/aoas-2020-0002
  28. Horváth L., Tamás G., Seagrave C. (2002). Carp and pond fish culture, 2nd ed. Blackwell Science: Oxford, UK.10.1002/9780470995662
  29. Hoseinifar S.H., Ahmadi A., Raeisi M., Hoseini S.M., Khalili M., Behnam-pour N. (2016). Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquac. Res., 48: 3298–3307.10.1111/are.13156
  30. Hugh A., Poston Gerald F., Combs Jr., Louis L. (1976). Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. J. Nutr., 106: 892–904.10.1093/jn/106.7.892
  31. Hussein M.S., Zaghlol A., Abd El Hakim N.F., El Nawsany M., Abo-State H.A. (2016). Effect of different growth promoters on growth performance, feed utilization and body composition of common carp (Cyprinus carpio). J. Fish Aquat. Sci., 11: 370–377.10.3923/jfas.2016.370.377
  32. Jackson K.G., Lovegrove J.A. (2012). Impact of probiotics, prebiotics and synbiotics on lipid metabolism in humans. J. Nutr. Health Aging, 1: 181–200.10.3233/NUA-130017
  33. Johnston I.A., Ward P.S., Goldspink G. (1975). Studies on the swimming musculature of the rainbow trout I. Fibre types. J. Fish Biol., 7: 451–458.10.1111/j.1095-8649.1975.tb04620.x
  34. Józefiak A., Nogales-Merida S., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res., 15: 348.10.1186/s12917-019-2070-y
  35. Karahmet E., Viles A., Katica A., Mlaco N., Toroman A. (2014). Differences between white and red muscle fibres diameter in three salmon fish species. Biotechnol. Anim. Husb., 30: 349–356.10.2298/BAH1402349K
  36. Kindt A., Liebisch G., Clavel T., Haller D., Hörmannsperger G., Yoon H., Kolmeder D., Sigruener A., Krautbauer S., Seeliger C., Ganzha A., Schweizer S., Morisset R., Strowig T., Daniel H., Helm D., Küster B., Krumsieke J. (2018). The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun, 9: 3760.10.1038/s41467-018-05767-4
  37. Kinsella J.E. (1986). Food component with potential benefits: the n-3 polyunsaturated fatty acids of fish oils. Food Technol., 40: 89–97.
  38. Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. (2000). Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr., 71: 179–188.10.1093/ajcn/71.1.179S
  39. Kurdomanov A., Sirakov I., Stoyanova S., Velichkova K., Nedeva I., Staykov Y. (2019). The effect of diet supplemented with Proviotic® on growth, blood biochemical parameters and meat quality in rainbow trout (Oncorhynchus mykiss) cultivated in recirculation system. AACL Bioflux, 12.
  40. Leaf A., Kang J.X., Xiao Y.F., Billman G.E. (2003). Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation, 107: 263–264.10.1161/01.CIR.0000069566.78305.33
  41. Leary S., Underwood W., Anthony R., Cartner S. (2013). AVMA Guidelines for the Euthanasia of Animals, 2013 Edition. AVMA, Schaumburg, IL, USA, pp. 67–73.
  42. Levitan E.B., Wolk A., Mittleman M.A. (2010). Fatty fish, marine ω-3 fatty acids and incidence of heart failure. Eur. J. Clin. Nutr., 64: 587–594.10.1038/ejcn.2010.50
  43. Listrat A., Bénédicte L., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. (2016). How muscle structure and composition influence meat and flesh quality. Sci. World J., 14.10.1155/2016/3182746
  44. Lockyer S., Stanner S. (2019). Prebiotics – an added benefit of some fibre types. Nutr. Bull., 44: 74–91.10.1111/nbu.12366
  45. Macfarlane S., Macfarlane G.T., Cummings J. (2006). Review article: Prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther., 24: 701–714.10.1111/j.1365-2036.2006.03042.x
  46. Maharajana A., Rufus Kitto M., Paruruckumania P.S., Ganapiriyaa V. (2016). Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper. JOBAZ, 77: 21–30.10.1016/j.jobaz.2016.02.001
  47. Mansour M.R., Akrami R., Ghobadi S.H., Amani Denji K., Ezatrahimi N., Gharaei A. (2012). Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol. Biochem., 38: 829–835.10.1007/s10695-011-9570-4
  48. Maraschiello C., Diaz I., Garcia Regueiro J.A. (1996). Determination of cholesterol in fat and muscle of pig by HPLC and capillary gas chromatography with solvent venting injection. J. High Resolut. Chromatogr., 19: 165–168.10.1002/jhrc.1240190309
  49. Markowiak P., Śliżewska K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog., 10: 21.10.1186/s13099-018-0250-0
  50. Mazurkiewicz J., Przybył A., Golski J. (2008). Usability of fermacto prebiotic in feeds for common carp (Cyprinus carpio L.) fry. Nauka Przyr. Technol., 2: 3.
  51. Miyatake H. (1997). Carp (in Japanese). Yoshoku, 34: 108–111.
  52. Moreira A.B., Visentainer J.V., De Souza N.E., Matsushita M. (2001). Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J. Food Compost. Anal., 14: 565–574.10.1006/jfca.2001.1025
  53. Mousavi E., Mohammadiazarm H., Mousavi S.M., Ghatrami E.R. (2016). Effects of inulin, savory and onion powders in diet of juveniles carp Cyprinus carpio (Linnaeus 1758) on gut microflora, immune response and blood biochemical parameters. TrJFAS, 16: 831–838.10.4194/1303-2712-v16_4_09
  54. Munir M.B., Hashim R., Manaf M.S.A., Nor S.A.M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilization, and body indices of snakehead (Channa striata) fingerlings. Trop. Life Sci. Res., 27: 111–125.10.1016/j.aquaculture.2016.03.041
  55. NRC (2011). Nutrient Requirement of Fish and Shrimp. Animal Nutrition Series. The National Academies Press, Washington, DC.
  56. Piccolo G., Centoducati G., Bovera F., Marrone R., Nizza A. (2013). Effects of mannan oligosaccharide and inulin on sharpsnout seabream (Diplodus puntazzo) in the context of partial fish meal substitution by soybean meal. Ital. J. Anim. Sci., 12: 133–138.10.4081/ijas.2013.e22
  57. Piironen V., Toivo J., Lampi A.M. (2002). New data for cholesterol contents in meat, fish, milk, eggs and their products consumed in Finland. J. Food Compost. Anal., 15: 705–713.10.1006/jfca.2002.1095
  58. Pokusaeva K., Fitzgerald G.F., Sinderen D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes Nutr., 6: 285.10.1007/s12263-010-0206-6
  59. Priester C., Lindsay C.M., Stephen T.K., Wade O.W., Richard M.D. (2011). Growth patterns and nuclear distribution in white muscle fibres from black sea bass, Centropristis striata: evidence for the influence of diffusion. J. Exp. Biol., 214: 1230–1239.10.1242/jeb.053199
  60. Puchała R., Pilarczyk M. (2007). The influence of nutrition on the chemical composition of carp meat (in Polish). Inż. Rol., 5: 363–368.
  61. Rabah S. (2005). Light microscope study of Oncorhynchus kisutch muscle development. Egypt. J. Aquat. Res., 31: 1.
  62. Schmidt E.B., Arnesen H., de Caterina R., Rasmussen L.H., Kristensen S.D. (2005). Marine n-3 polyunsaturated fatty acids and coronary heart disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb. Res., 115: 163–170.10.1016/j.thromres.2004.09.006
  63. Scholz-Ahrens K.E., Ade P., Marten B., Weber P., Timm W., Aςil Y., Gluer C.C., Schrezenmeir J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr., 137: 838S–846S.10.1093/jn/137.3.838S
  64. Steffens W., Wirth M. (2005). Freshwater fish – an important source of n-3 polyunsaturated fatty acids: A review. Arch. Polish Fish, 13: 5–16.
  65. Steffens W., Wirth M. (2007). Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac. Int., 15: 313–319.10.1007/s10499-007-9088-z
  66. Sun W., Li X., Xu H., Chen J., Xu X., Leng X. (2017). Effects of dietary geniposide on growth, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella. J. World Aquac. Soc., 48: 927–937.10.1111/jwas.12412
  67. Takeuchi T., Satoh S., Kiron V. (2002). Common carp, Cyprinus carpio. In: Nutrient requirements and feeding of finfish for aquaculture, C.D. Webster, C. Lim (eds). CABI Publishing, New York, 245–261.10.1079/9780851995199.0245
  68. Talpur A.D., Munir M.B., Mary A., Hashim R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, hematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, 426: 14–20.10.1016/j.aquaculture.2014.01.013
  69. Tavaniello S., Maiorano G., Stadnicka K., Mucci R., Bogucka J., Bednarczyk M. (2018). Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poultry Sci. J., 97: 2979–2987.10.3382/ps/pey149
  70. Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol., 28: 553–564.10.1111/j.1439-0426.2012.01950.x
  71. Tzortzis G., Goulas A.K., Gibson G.R. (2005). Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol., 68: 412–416.10.1007/s00253-005-1919-0
  72. Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338: 985–992.10.1016/0140-6736(91)91846-M
  73. Velasco S., Ortiz L.T., Alzueta C., Rebole A., Trevino J., Rodriguez M.L. (2010). Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Sci. J., 89: 1651–1662.10.3382/ps.2010-00687
  74. Wang J., Zhang D., Sun Y., Wang S., Li P., Gatlin D.M., Zhang L. (2016 a). Effect of a dairy-yeast prebiotic (GroBiotic-A) on growth performance, body composition, antioxidant capacity and immune functions of juvenile starry flounder (Platichthys stellatus). Aquac. Res., 47: 398–408.10.1111/are.12501
  75. Wang K., Wang E., Qin Z., Zhou Z., Geng Y., Chen D. (2016 b). Effects of dietary vitamin E deficiency on systematic pathological changes and oxidative stress in fish. Oncotarget, 20: 83869–83879.10.18632/oncotarget.13729535663127911874
  76. Wang R-F., An X-P., Wang Y., Qi J.-W., Zhang J., Liu Y.-H., Weng M.-Q., Yang Y.-P., Gao A.-Q. (2020). Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquacult. Nutr., 26: 1–12.10.1111/anu.13067
  77. Weatherley A., Gill H. (1989). The role of muscle in determining growth and size in teleost fish. Experientia, 45: 875–878.10.1007/BF01954062
  78. Zhu T., Corraze G., Plagnes-Juan E., Quillet E., Dupont-Nivet M., Skiba-Cass S. (2018). Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am. J. Physiol. Regul. Integr. Comp. Physiol., 314: R58–R70.10.1152/ajpregu.00179.2017
  79. Zimmerman A.M.A., Lowery M.S. (1999). Hyperplastic development and hypertrophic growth of muscle fibres in the white seabass (Atractoscion nobilis). J. Exp. Zool., 284: 299–308.10.1002/(SICI)1097-010X(19990801)284:3<;299::AID-JEZ7>3.0.CO;2-6
  80. Ziółkowska E., Bogucka J., Dankowiakowska A., Rawski M., Mazurkiewicz J., Stanek M. (2020). Effects of a trans-galactooligosaccharide on biochemical blood parameters and intestine morphometric parameters of common carp (Cyprinus carpio L.). Animals, 10: 723.10.3390/ani10040723
DOI: https://doi.org/10.2478/aoas-2021-0030 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 305 - 324
Submitted on: Feb 4, 2021
|
Accepted on: Apr 22, 2021
|
Published on: Feb 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Ewa Ziółkowska, Joanna Bogucka, Mateusz Rawski, Jan Mazurkiewicz, Giuseppe Maiorano, Magdalena Stanek, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.