Have a personal or library account? Click to login
Replacement of Fish Meal by Solid State Fermented Lupin (Lupinus albus) Meal with Latobacillus plantarum 299v: Effect on Growth and Immune Status of Juvenile Atlantic Salmon (Salmo salar)
Abu-Elala N.M., & Ragaa N.M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) in the health status of cultured Oreochromis niloticus. J. Adv. Res, 6: 621–629.10.1016/j.jare.2014.02.008
Al-Thobaiti A., Al-Ghanim K., Suliman E.M., &Mahboob S. (2017). Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance of Nile tilapia (Oreochromis niloticus L.) diets. Braz. J. Biol., 78(3): online. 10.1590/1519-6984.172230">http://dx.doi.org/10.1590/1519-6984.17223010.1590/1519-6984.17223029069165
Bonaldo A., Parma L., Mandrioli L., Sirri R., Fontanillas R., Badiani A., Gatta P.P. (2011). Increasing dietary plant proteins affect growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture, 318(1-2): 101 – 108.10.1016/j.aquaculture.2011.05.003
Bransden M.P., Carter C.G., & Nowak B.F. (2001). Effect of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci., 73(1): 105 – 113.10.1017/S1357729800058100
Castillo S., Rosales M., Pohlenz C., Gatlin III, D.M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433: 6 – 12.10.1016/j.aquaculture.2014.05.038
Chi C-H., & Cho S-J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. Tech., 68: 619 – 625.10.1016/j.lwt.2015.12.002
Cizeikiene D., Juodeikiene G., & Damasius J. (2018). Use of wheat straw biomass in production of L-lactic acid applying biocatalysts and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatal. Agri. Biotechnol., 15: 185 – 191.10.1016/j.bcab.2018.06.015
Cunha S.C., Ferreira I.M.P.L.V.O., Fernandes J.O., Faria M.A., Beatriz M., Oliveira P.P., & Ferreira M. A. (2001). Determination of lactic, acetic, succinic, and citric acids in table olives by HPLC/UV. J. Liq. Chromatogr. R. T., 24(7): 1029 – 1038.10.1081/JLC-100103429
Dai C., Ma H., He R., Huang L., Zhu S., Ding Q., & Luo L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT, 86: 1 – 7.10.1016/j.lwt.2017.07.041
Fu W., & Mathews A.P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate and oxygen. Biochem. Eng. J., 3(3): 163 – 170.10.1016/S1369-703X(99)00014-5
Furukawa A. & Tsukahara H. (1996). On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulleting of. Jpn. Soc. Sci. Fish., 32(3): 502–506.10.2331/suisan.32.502
Gatlin III D.M., Barrows F.T., Brown P., Dabrowsky K., Gaylord T.G., Hardy R.W., …Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res., 38(6): 551-579.10.1111/j.1365-2109.2007.01704.x
Gao X., Zhang M., Li X., Han Y., Wu F., & Liu Y. (2018). The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immun., 78: 42 – 51.10.1016/j.fsi.2018.04.010
Glencross D.B., Boujard T., & Kaushik S.J. (2003). Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture, 219(1-4):703-713.10.1016/S0044-8486(02)00664-6
Hang Y.D., Luh B.S., & Woodams E.E. (1987). Microbial production of Citric Acid by Solid State Fermentation of Kiwifruit Peel. J. Food Sci., 52(1): 226 – 227.10.1111/j.1365-2621.1987.tb14014.x
Hansen A-C., Roselund G., Karlsen O., Olsvik P.A., & Hemre G-I. (2006). The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquac. Res., 37(8): 773 – 78410.1111/j.1365-2109.2006.01490.x
He W., Rahimnejad S., Wang L., Song K., Lu K., & Zhang C. (2017). Effects of organic acid and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immun., 70: 164 – 173.10.1016/j.fsi.2017.09.007
Ho V.T.T., Fleet G.H., & Zhao J. (2018). Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to coca fermentation using inoculating organisms. Intl. J. Food Microbiol., 279: 43 – 56.10.1016/j.ijfoodmicro.2018.04.040
Johansen, R., Needham, J.R., Colquhoun, D.J., Poppe, T.T. & Smith, J. (2006) Guidelines for health and welfare monitoring of fish use in research. Laboratory Animals, 40(4), 323-340.10.1258/00236770677847645117018205
Katya K., Park G., Bharadwaj A.S., Browdy C., Vazquez-Anon M., & Bai S.C. (2018). Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquac. Res., 49(8): 2861 – 2868.10.1111/are.13749
Koh C-B., Romano N., Zahrah A.S., & Ng W-K (2016). Effects of dietary organic acid blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquac. Res., 47(2): 357 – 369.10.1111/are.12492
Li C., Zhang G.F., Mao X., Wang J.Y., Duan C.Y., Wang Z.J. & Liu L.B. (2016). Growth and acid production of Lactobacillus delbrueckii spp. Bulgaricus ATCC 11842 in the fermentation of algal carcass. J. Dairy Sci., 99(6): 4243 – 4250.10.3168/jds.2015-10700
Liong M.T., & Shah N.P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J. Applied Microbiol., 99(4): 783 – 793.10.1111/j.1365-2672.2005.02677.x
Liu W., Yang Y., Zhang J., Gatlin D.M., Ringo E., Zhou Z. (2014). Effects of dietary microencapsulated sodium butyrate on growth, intestinal mucosal morphology, immune response, and adhesive bacteria in juvenile common carp (Cyprinus carpio) pre-fed with or without oxidized oil. Brit. J. Nutr., 112: 15 – 29.10.1017/S0007114514000610
Luckstadt C. (2008). The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agri. Vet. Sci., Nutr. and Nat. Res., 3(44): 1 – 8.10.1079/PAVSNNR20083044
Mladenovic D., Pejin J., Kocic-Tanackov S., Radovanovic Z., Djukic-Vukovic A., Mojovic L. (2018). Lactic acid production on molasses enriched potato stillage by Lactobacillus paracasei immobilized on fish agro-industrial waste supports. Ind. Crop. Prod., 124: 142 – 148.10.1016/j.indcrop.2018.07.081
Moniruzzaman M., Bae J.H., Won S.H., Cho S.J., Chang K.H., & Bai S.C. (2017). Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout Oncorhynchus mykiss. Aquac. Nutr., 24(4): 1198 – 1212.10.1111/anu.12658
Ng W-K., & Koh C.B. (2016). The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquacult., 9(4): 342 – 368.10.1111/raq.12141
Pandey A., & Satoh S. (2008). Effects of organic acids on growth and phosphorous utilization in rainbow trout Oncorhynchus mykiss. Fish. Sci., 74(4): 867 – 874.10.1111/j.1444-2906.2008.01601.x
Pranoto Y., Anggrahini S., & Efendi Z. (2013). Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci., 2: 46 – 52.10.1016/j.fbio.2013.04.001
Rahimnejad S., Lu K., Wang L., Song K., Mai K., Davis D.A., Zhang C. (2019). Replacement of fish meal with Bacillus pumillus SE5 and Pseudpzyma aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus). Fish & Shellfish Immunol., 84: 987 – 997.10.1016/j.fsi.2018.11.009
Ray M., (2001). Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquac. Nutr., 5(4): 229 – 236.10.1046/j.1365-2095.1999.00101.x
Ringo E. (1991). Effects of dietary lactate and propionate on growth and ingesta in Arctic charr, Salvelinus alpinus (L.). Aquac., 96(3-4): 321 – 333.10.1016/0044-8486(91)90161-Y
Ringo E., Olsen R.E., & Castell J.D. (1994). Effect of dietary lactate on growth and chemical composition of Artic Charr Salvelinus alpinus. J. World Aquacult. Soc., 25(3): 483 – 486.10.1111/j.1749-7345.1994.tb00234.x
Saez P., Borquez A., Dantagnan P., & Hernández A. (2015) Effects of de-hulling, steam-cooking and microwave-irradiation in digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Arch. Anim. Nutri., 69 (2): 143 – 157.10.1080/1745039X.2015.100961325708530
Sakai M., Kobayashi M., & Kawauchi H. (1996). In vitro activation of fish phagocytosis cells by GH, prolactina and somatolactin. J. Endocrinol., 151(1): 113 – 118.10.1677/joe.0.1510113
Sarker M.S.A., Satoh S., Kamata K., Haga Y., & Yamamoto Y. (2011). Partial replacement of fish meal with plant protein sources using organic acids to practical diets for juvenile yellowtail, Seriola quinqueradiata. Aquacult. Nutr., 18(1): 81 – 89.10.1111/j.1365-2095.2011.00880.x
Shiu Y-L., Hsieh S-L., Guei W-C., Tsai Y-T., Chiu C-H., & Liu C-H. (2013). Using Bacillus substilis E20-fermented soybean meal as replacement for fish meal in the diet of orange-spotted grouper (Epinephelus coioides, Hamilton). Aquacult. Res., 46(6): 1403 – 1416.10.1111/are.12294
Smith D.M., Tabrett S.J., Glencross B.D., Irvin S.J., Barclay M.C. (2007). Digestibility of lupin kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture, 264(1-4). 353 – 362.10.1016/j.aquaculture.2006.12.002
Sharawy Z., Goda A. M. A. S., & Hassaan M. S. (2016). Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, postlarvae. Anim. Feed Sci. Tech., 212: 90 – 99.10.1016/j.anifeedsci.2015.12.009
Soccol C.R., Scopel-Ferreira da Costa E., Junior-Letti J.A., Karp S.G., Woiciechowski A.L., Porto de Souza-Vandenberghe L. (2017). Recent developments and innovations in solid state fermentation. Biotech. Res. Innov., 1(1): 52 – 71.10.1016/j.biori.2017.01.002
Srisukchayakul P., Charalampopoulos D., Karatzas K. (2018). Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Res. Intl., 111: 198 – 204.10.1016/j.foodres.2018.05.018
Su, X., Li X., Leng X., Tan C., Liu B., Chai X., Guo T. (2014). The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult. Intl., 22(6): 1823 – 1835.10.1007/s10499-014-9785-3
Sun H., Tang J-W., Yao X-H., Wu Y-F., Wang X., Liu Y., & Lou B. (2015). Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquacult., 446: 30 – 36.10.1016/j.aquaculture.2015.04.020
Vandenberghe L.P.S., Karp S.G., de Oliveira P.Z., de Carvalho J.C., Rodrigues C., & Soccol C.R. (2018). Chapter 18-Solid-State fermentation for the production of organic acids. In: Current Developments in Biotechnology and Bioengineering. Current advances in Solid-State Fermentation (Pandey, A., Larroche, C., & Soccol C.R. eds), pp 415 – 434. Elsevier. Langford Lane, Kidlington, UK.10.1016/B978-0-444-63990-5.00018-9
Van-Doan H., Doolgindachbaporn S., & Suksri A. (2014). Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basa fish (Pangasius bocourti, Sauvage 1880). Fish & Shellfish Immun., 41(2): 340 – 345.10.1016/j.fsi.2014.09.015
Wang L., Zhou H., He R., Xu W., Mai K., & He G. (2016b). Effect of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture, 464: 87 – 94.10.1016/j.aquaculture.2016.06.026
Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Yi M. (2018). Effects of dietary Lactobacillus rhamnosus JMC1136 and Lactococcus lactis subs. Lactis JCM5805 on the growth, intestinal microbioita, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immun., 76: 368 – 379.10.1016/j.fsi.2018.03.020
Yin G., Jeney G., Racz T., Pao X., & Jeney Z. (2006). Effect of two Chinese herbs (Astragalus radix and Scutellaria radix) on non-specific immune response of tilapia, Oreochromis niloticus. Aquaculture, 253(1-4): 39 – 47.10.1016/j.aquaculture.2005.06.038
Zhang C., Rahimnejad S., Wang Y., Lu K., Song K., Wang L., & Mai K. (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483: 173 – 182.10.1016/j.aquaculture.2017.10.029