Have a personal or library account? Click to login
Effects of Single and Combined Supplementation of Dietary Probiotic with Bovine Lactoferrin and Xylooligosaccharide on Hemato-Immunological and Digestive Enzymes of Silvery-Black Porgy (Sparidentex hasta) Fingerlings Cover

Effects of Single and Combined Supplementation of Dietary Probiotic with Bovine Lactoferrin and Xylooligosaccharide on Hemato-Immunological and Digestive Enzymes of Silvery-Black Porgy (Sparidentex hasta) Fingerlings

Open Access
|Jan 2020

References

  1. Aachary A.A., Prapulla S.G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comp. Rev. Food Sci. Food Saf., 10: 1–16.10.1111/j.1541-4337.2010.00135.x
  2. Abdel-Tawwab M., Khattab Y.A., Ahmad M.H., Shalaby A.M. (2006). Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). J. Appl. Aquacult., 18: 17–36.10.1300/J028v18n03_02
  3. Abdel-Tawwab M., Abdel-Rahman A.M., Ismael N.E.M. (2008). Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280: 185–189.10.1016/j.aquaculture.2008.03.055
  4. Ahmadifar E., Sheikhzadeh N., Roshanaei K., Dargahi N., Faggio C. (2019). Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture, 507: 341–348.10.1016/j.aquaculture.2019.04.049
  5. Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture. A review. Fish Shellfish Immunol., 45: 733–741.10.1016/j.fsi.2015.05.038
  6. Alejo A., Tafalla C. (2011). Chemokines in teleost fish species. Develop. Comparativ. Immunol., 35: 1215–1222.10.1016/j.dci.2011.03.011
  7. Andrews S.R., Sahu N.P., Pal A.K., Kumar S. (2009). Hematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannanoligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquacult. Res., 41: 61–69.10.1111/j.1365-2109.2009.02304.x
  8. Ashouri G., Yavari V., Bahmani M., Yazdani M.A., Kazemi R., Morshedi V., Fatollahi M. (2013). The effect of short-term starvation on some physiological and morphological parameters in juvenile Siberian sturgeon, Acipenser baerii (Actinopterygii: Acipenseriformes: Acipenseridae). Acta Ichthyol. Piscator., 43: 144–149.10.3750/AIP2013.43.2.07
  9. Association of Official Analytical Chemists (1995). Official Methods of Analysis of AOAC International, 18th ed., AOAC International, Arlington, USA.
  10. Azimirad M., Meshkini S., Ahmadifard N., Hoseinifar S.H. (2016). The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angel-fish (Pterophyllum scalare). Fish Shellfish Immunol., 54: 516–522.10.1016/j.fsi.2016.05.001
  11. Azodi M., Ebrahimi E., Motaghi E., Morshedi V. (2015). Metabolic responses to short starvation and re-feeding in rainbow trout (Oncorhynchus mykiss). Ichthyolog. Res., 62: 177–183.10.1007/s10228-014-0421-z
  12. Basurco B., Lovatelli A., Garcıa B. (2011). Current status of Sparidae aquaculture. In: Sparidae: Biology and aquaculture of gilthead sea bream and other species, Pavlidis M., Mylonas C. (eds). Oxford, UK, Wiley-Blackwell Scientific Publications, pp. 1–50.10.1002/9781444392210.ch1
  13. Blaxhall P.C., Daisley K.W. (1973). Routine hematological methods for use fish with blood. J. Fish Biol., 5: 771–781.10.1111/j.1095-8649.1973.tb04510.x
  14. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic. Biochem., 72: 248–254.10.1006/abio.1976.9999
  15. Carnevali O., Vivo L., Sulpizio R., Gioacchini G., Olivotto I., Silvi S., Cresci A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258: 430–438.10.1016/j.aquaculture.2006.04.025
  16. Cerezuela R., Cuesta A., Meseguer J. (2008). Effects of inulin on gilthead seabream (Sparus aurata) innate immune parameters. Aquaculture, 24: 663–668.10.1016/j.fsi.2007.10.002
  17. Chang C.I., Liu W.Y. (2002). An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. J. Fish Dis., 25: 311–315.10.1046/j.1365-2761.2002.00365.x
  18. Chitsaz H., Akrami R., Arab Arkadeh M. (2016). Effect of dietary synbiotics on growth, immune response and body composition of Caspian roach (Rutilus rutilus). Iran. J. Fish. Sci., 15: 170–182.
  19. Chong A.S.C., Hashim R., Lee C.Y., Ali B.A. (2002). Partial characterization and activities of proteases form the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203: 321–333.10.1016/S0044-8486(01)00630-5
  20. Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2015). Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol., 45: 33–42.10.1016/j.fsi.2015.01.033
  21. Dawood M.A.O., Koshio S., Esteban M.A. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.10.1111/raq.12209
  22. Dimitroglou A., Merrifield D.L., Spring P., Sweetman J., Moate R., Davies S.J. (2010). Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilization, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture, 300: 182–188.10.1016/j.aquaculture.2010.01.015
  23. Ellis A.E. (1990). Serum antiproteases in fish and lysozyme assays. In: Techniques in fish immunology, Stolen J.S., Fletcher T.C., Anderson D.P., Roberson B.S., Van Muiswinkel W.B. (eds). Fair Haven NJ, SOS Publications, pp. 95–103.
  24. Eslamloo K., Falahatkar B., Yokoyama S. (2012). Effects of dietary bovine lactoferrin on growth, physiological performance, iron metabolism and non-specific immune responses of Siberian sturgeon Acipenser baeri. Fish Shellfish Immunol., 32: 976–985.10.1016/j.fsi.2012.02.007
  25. Esteban M.A., Rodriguez A., Cuesta A., Meseguer J. (2005). Effects of lactoferrin on non-specific immune responses of gilthead seabream Sparus aurata. Fish Shellfish Immunol., 18: 109–124.10.1016/j.fsi.2004.06.003
  26. Faggio C., Fazio F., Marafioti S., Arfuso F., Piccione G. (2015). Oral administration of Gum Arabic: effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran. J. Fish. Sci., 14: 60–72.
  27. Falahatkar B., Eslamloo K., Yokoyama S. (2014). Suppression of stress responses in Siberian sturgeon, Acipenser baeri, juveniles by the dietary administration of bovine lactoferrin. J. World Aquacult. Soc., 45: 699–708.10.1111/jwas.12153
  28. Garcia - Carreño F.L., Haard N.F. (1993). Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem., 17: 97–113.10.1111/j.1745-4514.1993.tb00864.x
  29. Geraylou Z., Souffreau C., Rurangwa E., D’Hondt S., Callewaert L., Courtin C.M., Delcour J.A., Buyse J., Ollevier F. (2012). Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol., 33: 718–724.10.1016/j.fsi.2012.06.010
  30. Giansanti F., Panella G., Leboffe L., Antonini G. (2016). Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals, 9: 61.10.3390/ph9040061
  31. Grisdale-Helland B.G., Helland S.J., Gatlin D.M. (2008). The effect of dietary supplementation with mannanoligosacchare, fructooligosaccharide or galactooligosaccharide on the growth Atlantic salmon (Salmo salar). Aquaculture, 283: 163–167.10.1016/j.aquaculture.2008.07.012
  32. Guan Y., Zhou H., Wang Z. (2011). Effects of xylooligosaccharide on growth performance, activities of digestive enzymes, and intestinal microflora of juvenile Pelodiscus sinensis. Front. Agric. China, 5: 612–617.10.1007/s11703-011-1129-8
  33. Guzmán-Villanueva L.T., Tovar-Ramírez D., Gisbert E., Cordero H., Guardiola F.A., Cuesta A., Meseguer J., Ascencio-Valle F., Esteban M.A. (2014). Dietary administration of beta-1,3/1,6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on gilthead seabream growth, immune responses and gene expression. Fish Shellfish Immunol., 39: 34–41.10.1016/j.fsi.2014.04.024
  34. Hoseinifar S.H., Mirvaghefi A., Mojazi Amiri B., Khoshbavar Rostami H., Merrifield D.L. (2011). The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquacult. Nutr., 17: 498–504.10.1111/j.1365-2095.2010.00828.x
  35. Hoseinifar S.H., Sharifian M., Vesaghi M.J., Khalili M., Esteban M.A. (2014). The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisiikutum) fry. Fish Shellfish Immunol., 39: 231–236.10.1016/j.fsi.2014.05.009
  36. Hoseinifar S.H., Yousefi S., Capillo G., Paknejad H., Khalili M., Tabarraei A., Van Doan H., Spanò N., Faggio C. (2018). Mucosal immune parameters, immune and antioxidant defense related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol., 83: 232–237.10.1016/j.fsi.2018.09.046
  37. Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol. Biochem., 18: 59–69.
  38. Irianto A., Austin B. (2002). Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 25: 333–342.10.1046/j.1365-2761.2002.00375.x
  39. Kakuta I. (1996). Effect of orally administrated bovine lactoferrin on growth and blood properties of goldfish. Suisanzoshoku, 44: 419–426.
  40. Kawakami H., Hiratsuka M., Dosako S. (1988). Effects of iron-saturated lactoferrin on iron absorption. Agric. Biol. Chem., 52: 903–908.10.1080/00021369.1988.10868784
  41. Khademi F., Sajadi M.M., Sourinejad I., Daryai R., Kondor A.T. (2013). Effects of dietary Protexin supplementation on growth performance and survival of sobaity (Sparidentex hasta) (in Persian). J. Aquacult., 3: 65–78.
  42. Kumari J., Swain T., Sahoo P.K. (2003). Dietary bovine lactoferrin induces changes in immunity level and disease resistance in Asian catfish Clarias batrachus. Vet. Immunol. Immunopathol., 94: 1–9.10.1016/S0165-2427(03)00065-5
  43. Lee W., Ahn J.Y., Oh S.M., Kim N., Kang E.A., Kim K.-N., Kim J.B., Jeong Y.-J., Jeon A. (2016). Prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. Fish Shellfish Immunol., 51: 313–320.10.1016/j.fsi.2016.02.030
  44. Liu W., Ran C., Liu Z., Gao Q., Xu S., Ringø E., Myklebust R., Gu Z., Zhou Z. (2016). Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia. Microbiol. Open, 5: 687–699.10.1002/mbo3.362
  45. Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25: 402–408.10.1006/meth.2001.1262
  46. Lonnerdal B. (2009). Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr., 12: 293–297.10.1097/MCO.0b013e328328d13e
  47. Lygren B., Sveier H., Hjeltnes B., Waagbø R. (1999). Examination of the immunomodula-tory properties and the effect on disease resistance of dietary bovine lactoferrin and vitamin C fed to Atlantic salmon (Salmo salar) for a short-term period. Fish Shellfish Immunol., 9: 95–107.10.1006/fsim.1998.0179
  48. Mohammadian T., Alishahi M., Tabandeh M.R., Ghorbanpoor M., Gharibi D. (2017). Effect of Lactobacillus plantarum and Lactobacillus delbrueckii subsp. bulgaricus on growth performance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971). Iran. J. Fish. Sci., 16: 296–317.
  49. Mohapatra S., Chakrabory T., Prusty A.K., Das P., Paniprasad K., Mohanta K.N. (2012). Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquacult. Nutr., 18: 1–11.10.1111/j.1365-2095.2011.00866.x
  50. Moradian A.M., Dorafshan S., Paykan Heyrati F., Ebrahimi E. (2018). Effects of dietary bovine lactoferrin on growth, haemato-biochemical parameters, immune functions and tolerance to air exposure stress in the African cichlid Sciaenochromis fryeri. Aquacult. Nutr., 24: 392–399.10.1111/anu.12570
  51. Morshedi V., Agh N., Marammazi J., Noori F., Mohammadian T. (2015). Effects of dietary lactoferrin on growth performance, feed utilization, hematological and non-specific immune responses in sobaity (Sparidentex hasta) fingerling (in Persian). J. Anim. Environ., 2: 189–198.
  52. Morshedi V., Agh N., Marammazi J., Noori F., Mohammadian T. (2016 a). Effects of different levels of dietary lactoferrin on digestive enzymes, body composition and intestine bacterial flora of sobaity (Sparidentex hasta) fingerling (in Persian). Vet. J., 113: 65–74.
  53. Morshedi V., Agh N., Marammazi J., Noori F., Mohammadian T. (2016 b). Evaluation of digestive enzymes activities, carcass biochemical composition and gut bacterial flora in sobaity (Sparidentex hasta) fingerlings in response to different dietary xylooligosaccharide levels (in Persian). Anim. Physiol. Dev., 8: 37–47.
  54. Morshedi V., Agh N., Marammazi J., Noori F., Mohammadian T. (2016 c). Effects of dietary xylooligosaccharide on growth and feed utilization, hematological and non-especific immune parameters of sobaity (Sparidentex hasta) fingerlings (in Persian). J. Marine Biol., 26: 69–82.
  55. Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Agh N., Pagheh E., Gisbert E. (2017). Macronutrient requirements of silvery-black porgy (Sparidentex hasta): A comparison with other farmed sparid species. Fishes, 2: 5.10.3390/fishes2010005
  56. Mussatto S.I., Mancilha I.M. (2007). Non-digestible oligosaccharides: a review. Carbohyd. Polym., 68: 587–597.10.1016/j.carbpol.2006.12.011
  57. Nekoubin H., Sudagar M. (2012). Assessment of the effects of synbiotic (Biomin Imbo) via supplementation with artificial diet (with different protein levels) on growth performance and survival rate in grass carp (Ctenopharyngodon idella). World J. Zool., 7: 236–240.
  58. Nguyen D.N., Li Y., Sangild P.T., Bering S.B., Chatterton D.E.W. (2014). Effects of bovine lactoferrin on the immature porcine intestine. Brit. J. Nutr., 111: 321–331.10.1017/S0007114513002456
  59. Pagheh E., Marammazi J.G., Agh N., Nouri F., Sepahdari A., Gisbert E., Mozanzadeh M.T. (2018). Growth performance, hemato-immunological responses and digestive enzymes activities in silvery-black porgy (Sparidentex hasta) fed dietary bovine lactoferrin. Prob. Antimicrob. Prot., 10: 399–407.10.1007/s12602-017-9340-4
  60. Rahimnejad S., Agh N., Kalbassi M.R., Khosravi S. (2012). Effect of dietary bovine lactoferrin on growth, haematology and non-specific immune response in rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 43: 1451–1459.10.1111/j.1365-2109.2011.02947.x
  61. Ray A.K., Ghosh K., Ringø E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquacult. Nutr., 18: 465–492.10.1111/j.1365-2095.2012.00943.x
  62. Ren T., Koshio S., Ishikawa M., Yokoyama S., Micheal F.R., Uyan O., Tung T.H. (2007). Influence of dietary vitamin C and bovine lactoferrin on blood chemistry and non-specific immune responses of Japanese eel, Anguilla japonica. Aquaculture, 267: 31–37.10.1016/j.aquaculture.2007.03.033
  63. Ringo E., Faggio C., Chitmanat C., Doan H., Mai N.T., Jaturasitha S., Hoseinifar S.H. (2018). Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aqua-culture, 495: 786–793.10.1016/j.aquaculture.2018.06.068
  64. Rodriguez-Estrada U., Satoh S., Haga Y., Fushimi H., Sweetman J. (2009). Effects of single and combined supplementation of Enterococcus faecalis, mannanoligosaccharide and polyhydrobutyric acid on growth performance and immune response of rainbow trout Oncorhynchus mykiss. Suisanzoshoku, 57: 609–617.
  65. Sado R.Y., Bicudo A.J.D.A., Cyrno J.E.P. (2008). Feeding dietary mannanoligosaccharide to juvenile Nile tilapia (Oreochromis niloticus), has no effect on hematological parameters and showed decreased feed consumption. J. World Aquacult. Soc., 39: 821–826.10.1111/j.1749-7345.2008.00219.x
  66. Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139.10.1016/0165-2427(94)90062-0
  67. Son V.M., Chang C.C., Wu M.C., Guu Y.K., Chiu CH., Cheng W. (2009). Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol., 26: 691–698.10.1016/j.fsi.2009.02.018
  68. Talpur A.D., Munir M.B., Mary A., Hashim R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aqua-culture, 426: 14–20.10.1016/j.aquaculture.2014.01.013
  69. Tort L., Gómez E., Montero D., Sunyer J.O. (1996). Serum haemolytic and agglutinating activity as indicators of fish immunocompetence: their suitability in stress and dietary studies. Aqua-cult. Int., 4: 31–41.10.1007/BF00175219
  70. Vallejos-Vidal E., Reyes-López F., Teles M., MacKenzie S. (2016). The response of fish to immunostimulant diets. Fish Shellfish Immunol., 56: 34–69.10.1016/j.fsi.2016.06.028
  71. Van Doan H., Doolgindachbaporn S., Suksri A. (2014). Effects of low molecular weight agar and Lactobacillus plantarumon growth performance, immunity, and disease resistance of basafish (Pangasius bocourti, Sauvage 1880). Fish Shellfish Immunol., 41: 340–345.10.1016/j.fsi.2014.09.015
  72. Van Doan H., Hoseinifar S.H., Tapingkae W., Tongsiri S., Khamtavee P. (2016). Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 58: 678–685.10.1016/j.fsi.2016.10.013
  73. Wang W., Sun J., Liu C., Xue Z. (2017). Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquacult. Res., 48: 1–23.10.1111/are.13161
  74. Welker T.L., Lim C., Yildirim-Aksoy M., Klesius P.H. (2007). Growth, immune function, and disease and stress resistance of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of bovine lactoferrin. Aquaculture. 262: 156–162.10.1016/j.aquaculture.2006.09.036
  75. Welker T.L., Lim C., Yildirim-Aksoy M., Klesius P.H. (2010). Dietary bovine lactoferrin increases resistance of juvenile channel catfish, Ictalurus punctatus, to enteric septicemia. J. World Aquacult. Soc., 41: 28–39.10.1111/j.1749-7345.2009.00330.x
  76. Worthington C. (1991).Worthington Enzyme Manual: Enzymes and Related Biochemicals. Free-hold, New Jersey, USA.
  77. Xu B., Wang Y., Li J., Lin Q. (2009). Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. Biochem., 35: 351–357.10.1007/s10695-008-9248-8
  78. Yokoyama S., Koshio S., Takakura N., Oshida K., Ishikawa M., Gallardo Cigarroa F.J., Teshima S. (2005). Dietary bovine lactoferrin enhances tolerance to high temperature stress in Japanese flounder Paralichthys olivaceus. Aquaculture, 249: 367–373.10.1016/j.aquaculture.2005.03.024
  79. Yokoyama S., Koshio S., Takakura N., Oshida K., Ishikawa M., Gallardo Cigarroa F.J., Catacutan M.R., Teshima S. (2006). Effect of dietary bovine lactoferrin on growth response, tolerance to air exposure and low salinity stress conditions in orange spotted grouper Epinephelus coioides. Aquaculture, 255: 507–513.10.1016/j.aquaculture.2005.12.001
DOI: https://doi.org/10.2478/aoas-2019-0058 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 137 - 155
Submitted on: Jun 8, 2019
Accepted on: Aug 22, 2019
Published on: Jan 28, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Vahid Morshedi, Naser Agh, Farzaneh Noori, Fatemeh Jafari, Ahmad Ghasemi, Mansour Torfi Mozanzadeh, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.