References
- H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, 2000.
- J. Cullinan, The discriminant of a composition of two polynomials. Available at
https://studylib.net - J.B. Dence and T.P. Dence, Elements of the Theory of Numbers, Harcourt/Academic Press, San Diego, CA, 1999.
- N.H. Guersenzvaig, Elementary criteria for irreducibility of f (Xr), Israel J. Math. 169 (2009), 109–123.
- J. Harrington and L. Jones, Monogenic cyclotomic compositions, arXiv preprint, 2019. Available at arXiv: 1909.03541
- H.A. Helfgott, Square-free values of f (p), f cubic, Acta Math. 213 (2014), no. 1, 107–135.
- C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts in Mathematics, No. 70, Cambridge University Press, Cambridge-New York-Melbourne, 1976.
- L. Jones, Infinite families of reciprocal monogenic polynomials and their Galois groups, New York J. Math. 27 (2021), 1465–1493.
- L. Jones, Reciprocal monogenic quintinomials of degree 2n, Bull. Aust. Math. Soc. 106 (2022), no. 3, 437–447.
- J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss., 322 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999.
- H. Pasten, The ABC conjecture, arithmetic progressions of primes and squarefree values of polynomials at prime arguments, Int. J. Number Theory 11 (2015), no. 3, 721–737.
- L.C. Washington, Introduction to Cyclotomic Fields, Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.