Abstract
We prove a new irreducibility criterion for certain septinomials in ℤ[x], and we use this result to construct infinite families of reciprocal septinomials of degree 2n3 that are monogenic for all n ≥ 1.
We prove a new irreducibility criterion for certain septinomials in ℤ[x], and we use this result to construct infinite families of reciprocal septinomials of degree 2n3 that are monogenic for all n ≥ 1.
© 2024 Lenny Jones, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.