Have a personal or library account? Click to login
Reciprocal Monogenic Septinomials of Degree 2n3 Cover

Reciprocal Monogenic Septinomials of Degree 2n3

By: Lenny Jones  
Open Access
|Feb 2024

Figures & Tables

Examples for (3_8) and their factorizations

(Â, )(A, B)Factorization of ℱn,A,B(x)
(0, 0)(4, 24)(x2n+1 + 36x2n−1 3 + 434x2n + 36x2n−1 + 1)Φ2n+1 (x)
(0, 1)(4, 357)(x2n + 3x2n−1 + 1)(x2n+1 + 33x2n−1 3 + 335x2n + 33x2n−1 + 1)
(0, 3)(4, 591)(x2n + 9x2n−1 + 1)(x2n+1 + 27x2n−13 + 191x2n + 27x2n−1 + 1)
(1, 0)(1, 24)(x2n + 6x2n−1 + 1)(x2n+1 + 3x2n−13 + 11x2n + 3x2n−1 + 1)
(1, 2)(1, 6)(x2n+1 + 9x2n−13 + 29x2n + 92n−1 + 1)Φ2n+1 (x)
(1, 3)(1, 15)(x2n + 3x2n−1 + 1)3
(2, 0)(2, 12)(x2n+1 + 18x2n−13 + 110x2n + 18x2n−1 + 1)Φ2n+1 (x)
(2, 1)(2, 93)(x2n + 9x2n−1 + 1)(x2n+1 + 9x2n−13 + 29x2n + 9x2n−1 + 1)
(2, 3)(2, 75)(x2n + 3x2n−1 + 1)(x2n+1 + 15x2n−13 + 65x2n + 15x2n−1 + 1)
(3, 0)(3, 252)(x2n + 6x2n−1 + 1)(x2n+1 + 21x2n−1 3 + 119x2n + 21x2n−1 + 1)
(3, 1)(3, 189)(x2n + 3x2n−1 + 1)(x2n+1 + 24x2n−1 3 + 173x2n + 24x2n−1 + 1)
(3, 2)(3, 18)(x2n+1 + 27x2n−1 3 + 245x2n + 27x2n−1 + 1)Φ2n+1 (x)
DOI: https://doi.org/10.2478/amsil-2024-0003 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 155 - 169
Submitted on: Jun 11, 2023
Accepted on: Jan 24, 2024
Published on: Feb 21, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Lenny Jones, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.