Have a personal or library account? Click to login
Interconnection and Damping Assignment Passivity–Based Control of an Underactuated 2–DOF Gyroscope Cover

Interconnection and Damping Assignment Passivity–Based Control of an Underactuated 2–DOF Gyroscope

Open Access
|Jan 2019

References

  1. Acosta, J., Ortega, R., Astolfi, A. and Mahindrakar, A. (2005). Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one, IEEE Transactions on Automatic Control 50(12): 1936-1955.10.1109/TAC.2005.860292
  2. Aguilar-Ibanez, C. (2016). Stabilization of the PVTOL aircraft based on a sliding mode and a saturation function, International Journal of Robust and Nonlinear Control 27(5): 843-859.10.1002/rnc.3601
  3. Antonio-Cruz, M., Hernandez-Guzman, V.M. and Silva-Ortigoza, R. (2018). Limit cycle elimination in inverted pendulums: Furuta pendulum and pendubot, IEEE Access 6: 30317-30332.10.1109/ACCESS.2018.2839642
  4. Bloch, A.M. (2003). Nonholonomic Mechanics and Control, Springer-Verlag, New York, NY.10.1007/b97376
  5. Bloch, A.M., Reyhanoglu, M. and McClamroch, N.H. (1992). Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control 37(11): 1746-1757.10.1109/9.173144
  6. Cannon, R.H. (1967). Dynamics of Physical Systems, McGraw-Hill, New York, NY.
  7. Chang, D. (2014). On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regular and Chaotic Dynamics 19(5): 556-575.10.1134/S1560354714050049
  8. Chin, C.S., Lau, M.W.S., Low, E. and Seet, G.G.L. (2006). A robust controller design method and stability analysis of an underactuated underwater vehicle, International Journal of Applied Mathematics and Computer Science 16(3): 345-356.
  9. Donaire, A., Mehra, R., Ortega, R., Satpute, S., Romero, J.G., Kazi, F. and Singh, N.M. (2015). Shaping the energy of mechanical systems without solving partial differential equations, American Control Conference, Chicago, IL, USA, pp. 1351-1356.10.1109/ACC.2015.7170921
  10. Donaire, A., Romero, J.G., Ortega, R., Siciliano, B. and Crespo, M. (2016). Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances, International Journal of Robust and Nonlinear Control 27(6): 1000-1016.10.1002/rnc.3615
  11. Fantoni, I. and Lozano, R. (2002). Non-linear Control for Underactuated Mechanical Systems, Advances in Pattern Recognition, Springer, London.10.1007/978-1-4471-0177-2
  12. Ferraz-Mello, S. (2007). Canonical Perturbation Theories, 1st Edn., Springer-Verlag, New York, NY.10.1007/978-0-387-38905-9
  13. Fulford, G., Forrester, P. and Jones, A. (1997). Modelling with Differential and Difference Equations, Australian Mathematical Society Lecture Series, Cambridge University Press, Cambridge.
  14. Gómez-Estern, F. and van der Schaft, A. (2004). Physical damping in IDA-PBC controlled underactuated mechanical systems, European Journal of Control 10(5): 451-468.10.3166/ejc.10.451-468
  15. Greenwood, D.T. (1977). Classical Dynamics, Dover, New York, NY.10.1115/1.3424126
  16. Jiang, Z.P. (2010). Controlling underactuated mechanical systems: A review and open problems, in J. Levine and P. Mullhaupt (Eds.), Advances in the Theory of Control, Signals and Systems with Physical Modeling, Lecture Notes in Control and Information Sciences, Vol. 407, Springer, Berlin, pp. 77-88.10.1007/978-3-642-16135-3_7
  17. Kang, W., Xiao, M. and Borges, C. (2003). New Trends in Nonlinear Dynamics and Control, and their Applications, 1st Edn., Springer-Verlag, Heidelberg/Berlin.10.1007/b80168
  18. Kelly, R., Santibánez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, 1st Edn., Springer-Verlag, London.
  19. Kotyczka, P. and Lohmann, B. (2009). Parametrization of IDA-PBC by assignment of local linear dynamics, Proceedings of the European Control Conference, Budapest, Hungary, pp. 4721-4726.10.23919/ECC.2009.7075146
  20. Kozlov, V.V. (1996). Symmetries, Topology and Resonances in Hamiltonian Mechanics, 1st Edn., Springer-Verlag, Heidelberg/Berlin.10.1007/978-3-642-78393-7_1
  21. Layek, G.C. (2015). An Introduction to Dynamical Systems and Chaos, 1st Edn., Springer, New Delhi.10.1007/978-81-322-2556-0_1
  22. Liu, Y. (2018). Control of a class of multibody underactuated mechanical systems with discontinuous friction using sliding-mode, Transactions of the Institute of Measurement and Control 40(2): 514-527.10.1177/0142331216661759
  23. Liu, Y. and Yu, H. (2013). A survey of underactuated mechanical systems, IET Control Theory and Applications 7(7): 921-931.10.1049/iet-cta.2012.0505
  24. Mahindrakar, A.D., Astolfi, A., Ortega, R. and Viola, G. (2006). Further constructive results on interconnection and damping assignment control of mechanical systems: The acrobot example, International Journal of Robust and Nonlinear Control 16(14): 671-685.10.1002/rnc.1088
  25. Moreno-Valenzuela, J. and Aguilar-Avelar, C. (2018). Motion Control of Underactuated Mechanical Systems, 1st Edn., Springer International Publishing, Cham.10.1007/978-3-319-58319-8
  26. Nagata, W. and Namachchivaya, N.S. (2006). Bifurcation Theory and Spatio-Temporal Pattern Formation, Fields Institute Communications, Ontario.10.1090/fic/049
  27. Ortega, R., Spong, M., Gómez-Estern, F. and Blankeinstein, G. (2002). Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE Transactions on Automatic Control 47(8): 1213-1233.10.1109/TAC.2002.800770
  28. Ostrowski, J.P. and Burdick, J.W. (1997). Controllability for mechanical systems with symmetries and constraints, Applied Mathematics and Computer Science 7(2): 305-331.
  29. Parks, R. (1999). Manual for model 750 control moment gyroscope, Technical document, Educational Control Products, Bell Canyon, CA, http://maecourses.ucsd.edu/ugcl/download/manuals/gyroscope.pdf.
  30. Quanser (2009). Specialty plant: 3 DOF gyroscope. User manual, Document Number 806, Revision 1.0, https://www.quanser.com/products/3-dof-gyroscope.
  31. Rana, N. and Joag, P. (1991). Classical Mechanics, Tata McGraw-Hill, New Delhi. Reyhanoglu, M. and van de Loo, J. (2006a). Rest-to-rest maneuvering of a nonholonomic control moment gyroscope, IEEE International Symposium on Industrial Electronics, Montreal, Canada, pp. 160-165.
  32. Reyhanoglu, M. and van de Loo, J. (2006b). State feedback tracking of a nonholonomic control moment gyroscope, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 6156-6161.10.1109/CDC.2006.377590
  33. Romero, J.G., Donaire, A., Ortega, R. and Borja, P. (2017). Global stabilisation of underactuated mechanical systems via PID passivity-based control, IFAC PapersOnLine 50(1): 9577-9582.10.1016/j.ifacol.2017.08.1674
  34. Sabattini, L., Secchi, C. and Fantuzzi, C. (2017). Collision avoidance for multiple Lagrangian dynamical systems with gyroscopic forces, International Journal of Advanced Robotic Systems 1(15): 1-15.10.1177/1729881416687109
  35. Sandoval, J., Kelly, R. and Santibanez, V. (2011). Interconnection and damping assignment passivity-based control of a class of underactuated mechanical systems with dynamic friction, International Journal of Robust and Nonlinear Control 21(7): 738-751.10.1002/rnc.1622
  36. Sandoval, J., Ortega, R. and Kelly, R. (2008). Interconnection and damping assignment passivity-based control of the pendubot, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 7700-7704.10.3182/20080706-5-KR-1001.01302
  37. Santibanez, V., Kelly, R. and Llama, M.A. (2004). Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(1): 710-718.10.1109/TSMCB.2003.811764
  38. Seifried, R. (2014). Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal Design (Solid Mechanics and Its Applications), Springer, Cham.10.1007/978-3-319-01228-5
  39. Seyranian, A., Stoustrup, J. and Kliem, W. (1995). On gyroscopic stabilization, Journal of Applied Mathematics and Physics 46(2): 255-267.10.1007/BF00944756
  40. She, J., Zhang, A., Lai, X. and Wu, M. (2012). Global stabilization of 2-DOF underactuated mechanical systems: An equivalent-input-disturbance approach, Nonlinear Dynamics 69(1-2): 495-509.10.1007/s11071-011-0280-3
  41. Wichlund, K.Y., Sordalen, O.J. and Egeland, O. (1995). Control of vehicles with second-order nonholonomic constraints: Underactuated vehicles, Proceedings of the 3rd European Control Conference, Rome, Italy, pp. 3086-3091.
DOI: https://doi.org/10.2478/amcs-2018-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 661 - 677
Submitted on: Nov 23, 2017
Accepted on: Jul 15, 2018
Published on: Jan 11, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gustavo Cordero, Víctor Santibáñez, Alejandro Dzul, Jesús Sandoval, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.