Have a personal or library account? Click to login

Imitation learning of car driving skills with decision trees and random forests

Open Access
|Sep 2014

References

  1. Anderson, C.W., Draper, B.A. and Peterson, D.A. (2000). Behavioral cloning of student pilots with modular neural networks, Proceedings of the 17th International Conference on Machine Learning (ML-2000), Stanford, CA, USA, pp. 25-32.
  2. Atkeson, C.G. and Schaal, S. (1997). Robot learning from demonstration, Proceedings of the 14th International Conference on Machine Learning (ML-97), Nashville, TN, USA, pp. 12-20.
  3. Baluja, S. (1996). Evolution of an artificial neural network based autonomous land vehicle controller, IEEE Transactions on Systems, Man and Cybernetics 26(3): 450-463.10.1109/3477.49979518263046
  4. Bratko, I., Urbancic, T. and Sammut, C. (1998). Behavioural cloning of control skill, in R.S. Michalski, I. Bratko and M. Kubat (Eds.), Machine Learning and Data Mining, John Wiley & Sons, Chichester.
  5. Breiman, L. (1996). Bagging predictors, Machine Learning 24(2): 123-240.10.1007/BF00058655
  6. Breiman, L. (2001). Random forests, Machine Learning 45(1): 5-32.10.1023/A:1010933404324
  7. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and Regression Trees, Chapman and Hall, New York, NY.
  8. Buehler, M., Iagnemma, K. and Singh, S. (Eds.) (2007). The 2005 DARPA Grand Challenge: The Great Robot Race, Springer, Berlin.10.1007/978-3-540-73429-1
  9. Buehler, M., Iagnemma, K. and Singh, S. (Eds.) (2009). The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Springer, Berlin.10.1007/978-3-642-03991-1
  10. Cardamone, L., Loiacono, D. and Lanzi, P. (2009a). On-line neuroevolution applied to The Open Racing Car Simulator, Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC-09), Trondheim, Norway, pp. 2622-2629.10.1109/CEC.2009.4983271
  11. Cardamone, L., Loiacono, D. and Lanzi, P. (2010). Learning to drive in The Open Racing Car Simulator using online neuroevolution, IEEE Transactions on Computational Intelligence and AI in Games 2(3): 176-190.10.1109/TCIAIG.2010.2052102
  12. Cardamone, L., Loiacono, D. and Lanzi, P.L. (2009b). Learning drivers for TORCS through imitation using supervised methods, Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games (CIG-09), Milano, Italy, pp. 148-155.10.1109/CIG.2009.5286480
  13. Chambers, R.A. and Michie, D. (1969). Man-machine co-operation on a learning task, in R. Parslow, R. Prowse and R. Elliott-Green (Eds.), Computer Graphics: Techniques and Applications, Plenum, London, pp. 179-186.10.1007/978-1-4684-8586-8_18
  14. Cichosz, P. (1995). Truncating temporal differences: On the efficient implementation of TD(λ) for reinforcement learning, Journal of Artificial Intelligence Research 2: 287-318.10.1613/jair.135
  15. Cichosz, P. (2007). Learning Systems, 2nd Edn., WNT,Warsaw, (in Polish).
  16. D’Este, C., O’Sullivan, M. and Hannah, N. (2003). Behavioural cloning and robot control, Proceedings of the International Conference on Robotics and Applications, Salzburg, Austria, pp. 179-182.
  17. Dietterich, T.G. (2000). Ensemble methods in machine learning, Proceedings of the 1st International Workshop on Multiple Classifier Systems, Cagliari, Italy, pp. 1-15.
  18. Esposito, F., Malerba, D. and Semeraro, G. (1997). A comparative analysis of methods for pruning decision trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5): 476-491.10.1109/34.589207
  19. Forbes, J.R.N. (2002). Reinforcement Learning for Autonomous Vehicles, Ph.D. thesis, University of California at Berkeley, Berkeley, CA.
  20. Guizzo, E. (2011). How Google’s self-driving car works, IEEE Spectrum, http://spectrum.ieee.org.
  21. Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd Edn., Morgan Kaufmann, San Francisco, CA.
  22. Hertz, J., Krogh, A. and Palmer, R.G. (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Boston, MA.10.1063/1.2810360
  23. John, G.H. (1996). Robust linear discriminant trees, in D. Fisher and H. Lenz (Eds.), Learning from Data: Artificial Intelligence and Statistics V, Springer, New York, NY, pp. 375-385.10.1007/978-1-4612-2404-4_36
  24. Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996). Reinforcement learning: A survey, Journal of Artificial Intelligence Research 4: 237-285.10.1613/jair.301
  25. Kohl, N., Stanley, K., Miikkulainen, R., Samples, M. and Sherony, R. (2006). Evolving a real-world vehicle warning system, Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO-06), Seattle, WA, USA, pp. 1681-1688.
  26. Krödel, M. and Kuhnert, K.-D. (2002). Reinforcement learning to drive a car by pattern matching, Proceedings of the 24th DAGM Symposium on Pattern Recognition, Zurich, Switzerland, pp. 322-329.
  27. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M. and Thrun, S. (2011). Towards fully autonomous driving: Systems and algorithms, Proceedings of the IEEE Intelligent Vehicles Symposium (IV-11), Baden-Baden, Germany, pp. 163-168.
  28. Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest, R News 2/3: 18-22.
  29. Loiacano, D., Cardamone, L. and Lanzi, P.L. (2009). Simulated car racing championship 2009: Competition software manual, Technical report, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano.
  30. Loiacono, D., Prete, A., Lanzi, P. L. and Cardamone, L. (2010). Learning to overtake in TORCS using simple reinforcement learning, Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC-2010), Barcelona, Spain, pp. 1-8.
  31. Mitchell, T. (1997). Machine Learning, McGraw Hill, New York, NY.
  32. Munoz, J., Gutierrez, G. and Sanchis, A. (2009). Controller for TORCS created by imitation, Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games (CIG-09), Milano, Italy, pp. 271-278.
  33. Park, B.-H. and Kargupta, H. (2002). Constructing simpler decision trees from ensemble models using Fourier analysis, Proceedings of the 7th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Madison, WI, USA, pp. 18-23.
  34. Pomerleau, D. (1988). ALVINN: An autonomous land vehicle in a neural network, Advances in Neural Information Processing Systems 1 (NIPS-88), Denver, CO, USA, pp. 305-313.
  35. Quinlan, J.R. (1986). Induction of decision trees, Machine Learning 1(1): 81-106.10.1007/BF00116251
  36. Quinlan, J.R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.
  37. Quinlan, J.R. (1999). Simplifying decision trees, International Journal of Human-Computer Studies 51(2): 497-491. R Development Core Team (2010). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, www.R-project.org.
  38. Sammut, C. (1996). Automatic construction of reactive control systems using symbolic machine learning, Knowledge Engineering Review 11(1): 27-42.10.1017/S0269888900007669
  39. Sammut, C., Hurst, S., Kedzier, D. and Michie, D. (1992). Learning to fly, Proceedings of the 9th International Conference on Machine Learning (ML-92), Aberdeen, UK, pp. 385-393.
  40. Stavens, D.M. (2011). Learning to Drive: Perception for Autonomous Cars, Ph.D. thesis, Stanford University, Stanford, CA.
  41. Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA.10.1109/TNN.1998.712192
  42. Therneau, T.M. and Atkinson, E.J. (1997). An introduction to recursive partitioning using the RPART routines, Technical report, Mayo Clinic, Rochester, MN.
  43. Thrun, S. (2010). What we’re driving at, Google Official Blog, http://googleblog.blogspot.com/2010/10/what-were-driving-at.html.
  44. Togelius, J., De Nardi, R. and Lucas, S.M. (2006). Making racing fun through player modeling and track evolution, Proceedings of the SAB-06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games, Rome, Italy, pp. 61-70.
  45. Triviño Rodriguez, J.L., Ruiz-Sep´ulveda, A. and Morales-Bueno, R. (2008). How an ensemble method can compute a comprehensible model, Proceedings of the 10th International Conference Data Warehousing and Knowledge Discovery (DaWaK-08), Turin, Italy, pp. 368-378. Urbancic, T. and Bratko, I. (1994). Reconstructing human skill with machine learning, Proceedings of the 11th European Conference on Artificial Intelligence (ECAI-94), Amsterdam, The Netherlands, pp. 498-502.
  46. Utgoff, P. E. (1989). Incremental induction of decision trees, Machine Learning 4(2): 161-186.10.1023/A:1022699900025
  47. Van Assche, A. and Blockeel, H. (2007). Seeing the forest through the trees: Learning a comprehensible model from an ensemble, Proceedings of the 18th European Conference on Machine Learning (ECML-07), Warsaw, Poland, pp. 418-429.
  48. Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edn., Morgan Kaufmann, San Francisco, CA.
  49. Wymann, B. (2006). TORCS manual installation and robot tutorial, http://www.berniw.org/aboutme/publications/torcs.pdf.
  50. Zajdel, R. (2013). Epoch-incremental reinforcement learning algorithms, International Journal of Applied Mathematics and Computer Science 23(3): 623-635, DOI: 10.2478/amcs-2013-0047. 10.2478/amcs-2013-0047
DOI: https://doi.org/10.2478/amcs-2014-0042 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 579 - 597
Submitted on: Jan 31, 2013
Published on: Sep 25, 2014
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Paweł Cichosz, Łukasz Pawełczak, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.