Have a personal or library account? Click to login
A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators Cover

A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators

Open Access
|Jun 2013

References

  1. Ben-Isreal, A. and Cohen, D. (1966). On iterative computation of generalized inverses and associated projections, SIAMJournal on Numerical Analysis 3(3): 410-419.10.1137/0703035
  2. Ben-Isreal, A. and Greville, T. (2003). Generalized Inverses:Theory and Applications, CMS Books in Mathematics, 2nd Edn., Springer, New York, NY.
  3. Chiacchio, P. and Siciliano, B. (1989). A closed-loop Jacobian transpose scheme for solving the inverse kinematics of nonredundant and redundant wrists, Journal of RoboticSystems 6(5): 601-630.10.1002/rob.4620060507
  4. D’Souza, A., Vijaykumar, S. and Schaal, S. (2001). Learning inverse kinematics, International Conference on IntelligentRobots and Systems, Maui, HI, USA, pp. 298-303.
  5. Dulęba, I. and Jagodzi´nski, J. (2011). Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems, International Journal of Applied Mathematicsand Computer Science 21(3): 525-534, DOI: 10.2478/v10006-011-0041-y.10.2478/v10006-011-0041-y
  6. Dulęba, I. and Sasiadek, J. (2002). Modified Jacobian method of transversal passing through the smallest deficiency singularities for robot manipulators, Robotica20(4): 405-415.10.1017/S0263574702004095
  7. Golub, G. and Van Loan, C. (1996). Matrix Computations, 3rd Edn., Johns Hopkins, Baltimore, MD.
  8. Horn, R. and Johnson, C. (1986). Matrix Analysis, Cambridge University Press, New York, NY.
  9. Hunek, W. and Latawiec, K.J. (2011). A study on new right/left inverses of nonsquare polynomial matrices, InternationalJournal of Applied Mathematics and Computer Science21(2): 331-348, DOI: 10.2478/v10006-011-0025-y.10.2478/v10006-011-0025-y
  10. Lee, C. (1982). Robot arm kinematics, dynamics, and control, Computer 15(12): 62-80.10.1109/MC.1982.1653917
  11. Levenberg, K. (1944). A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics2: 164-168.10.1090/qam/10666
  12. Maciejewski, A. and Klein, C. (1989). The singular value decomposition: Computation and applications to robotics, International Journal of Robotics Research 8(6): 63-79.10.1177/027836498900800605
  13. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics11(2): 431-441.10.1137/0111030
  14. Nakamura, Y. (1991). Advanced Robotics: Redundancy andOptimization, Addison Wesley, New York, NY.
  15. Nearchou, A. (1998). Solving the inverse kinematics problem of redundant robots operating in complex environments via a modified genetic algorithm, Mechanism and Machine Theory33(3): 273-292.10.1016/S0094-114X(97)00034-7
  16. Tchoń, K. and Dul˛eba, I. (1993). On inverting singular kinematics and geodesic trajectory generation for robot manipulators, Journal of Intelligent and Robotic Systems8(3): 325-359.10.1007/BF01257948
  17. Tchoń, K., Dul˛eba, I., Muszy´nski, R., Mazur, A. and Hossa, R. (2000). Manipulators and Mobile Robots: Models, MotionPlanning, Control, PLJ, Warsaw, (in Polish).
  18. Tchoń, K., Karpi´nska, J. and Janiak, M. (2009). Approximation of Jacobian inverse kinematics algorithms, InternationalJournal of Applied Mathematics and Computer Science19(4): 519-531, DOI: 10.2478/v10006-009-0041-3.10.2478/v10006-009-0041-3
  19. Tejomurtula, S. and Kak, S. (1999). Inverse kinematics in robotics using neural networks, Information Sciences116(2-4): 147-164.10.1016/S0020-0255(98)10098-1
DOI: https://doi.org/10.2478/amcs-2013-0028 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 373 - 382
Published on: Jun 28, 2013
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Ignacy Dulęba, Michał Opałka, published by University of Zielona Góra
This work is licensed under the Creative Commons License.