Have a personal or library account? Click to login
Optimization of Patch Shape for FGM Plates Using The NSGA-II Algorithm Cover

Optimization of Patch Shape for FGM Plates Using The NSGA-II Algorithm

Open Access
|Dec 2025

References

  1. Van Doan D, Van Minh P, Van Ke T, Nhung NTC, Van Thom D. An overview of functionally graded materials: from civil applications to defense and aerospace industries. J Vib Eng&Technol. 2025;13(1):68.
  2. Hussain SA, Charoo MS, Haq MIU. 3D printing of functionally graded materials: Overcoming challenges and expanding applications. In: Multi-material Additive Manufacturing. Elsevier. 2025; 67-97.
  3. Alkunte S, Fidan I, Naikwadi V, Gudavasov S, Ali MA, Mahmudov M, et al. Advancements and challenges in additively manufactured functionally graded materials: A comprehensive review. J Manuf Mater Process. 2024;8(1):23.
  4. Kumar P, Sharma SK, Singh RKR. Recent trends and future outlooks in manufacturing methods and applications of FGM: a comprehensive review. Mater Manuf Process. 2023;38(9):1033-67.
  5. Li Y, Feng Z, Hao L, Huang L, Xin C, Wang Y, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv Mater Technol. 2020;5(6):1900981.
  6. Saleh B, Jiang J, Fathi R, Al-Hababi T, Xu Q, Wang L, et al. 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges. Compos Part B Eng. 2020;201:108376.
  7. Sun L, Sneller A, Kwon P. Fabrication of alumina/zirconia functionally graded material: From optimization of processing parameters to phenomenological constitutive models. Mater Sci Eng A. 2008;488 (1-2):31-8.
  8. Hvizdoš P, Jonsson D, Anglada M, Anné G, Van Der Biest O. Mechanical properties and thermal shock behaviour of an alumina/zirconia functionally graded material prepared by electrophoretic deposition. J Eur Ceram Soc. 2007;27(2–3):1365–71.
  9. Huang CY, Chen YL. Effect of varied alumina/zirconia content on ballistic performance of a functionally graded material. Int J Refract Met Hard Mater. 2017;67:129-40.
  10. Beranič Klopčič S, Novak S, Kosmač T, Richter HG, Hecht-Mijic S. The preparation and properties of functionally graded alumina/zirconia-toughened alumina (zta) ceramics for biomedical applications. Key Eng Mater. 2005;290:348-52.
  11. Bhattacharya S, Sharma K. Fatigue crack growth simulations of FGM plate under cyclic thermal load by XFEM. Procedia Eng. 2014;86:727-31.
  12. Sun L, Grasselli G, Liu Q, Tang X. Thermal cracking simulation of functionally graded materials using the combined finite--discrete element method. Comput Part Mech. 2020;7:903-17.
  13. Lesiuk G, Katkowski M, Duda M, Krolicka A, Correia J, De Jesus AMP, et al. Improvement of the fatigue crack growth resistance in long term operated steel strengthened with CFRP patches. Procedia Struct Integr. 2017;5:912-9.
  14. Tavakkolizadeh M, Saadatmanesh H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. J Struct Eng. 2003;129(2):186-96.
  15. Hu J, Kang R, Fang J, Chen S, Xuan S, Zhou J, et al. An experimental and parametrical study on repair of cracked titanium airframe structures with single-side bonded carbon fiber-reinforced polymer prepreg patches. Compos Struct. 2024;338:118102.
  16. Karuppannan D, Rawat RS, Ramachandra H V, Saji D, Varughese B. Composites for reinforcement of damaged metallic aircraft wings. J Aerosp Sci Technol. 2013;8-13.
  17. Brandtner-Hafner M. Evaluating the bonding effectiveness of CFRP patches in strengthening concrete structures. Constr Build Mater. 2024;436:136966.
  18. Reis JML, Costa AR, da Costa Mattos HS. Repair of damage in pipes using bonded GFRP patches. Compos Struct. 2022;296:115875.
  19. El-Emam HM, Salim HA, Sallam HEDM. Composite patch configuration and prestraining effect on crack tip deformation and plastic zone for inclined cracks. J Compos Constr. 2016; 20(4):4016002.
  20. Ghafoori E, Motavalli M. A retrofit theory to prevent fatigue crack initiation in aging riveted bridges using carbon fiber-reinforced polymer materials. Polymers (Basel). 2016;8(8):308.
  21. Boulenouar A, Bouchelarm MA, Chafi M. Numerical investigation of cracked metal/ceramic FGM plates repaired with bonded composite patch. Int J Interact Des Manuf. 2024;18(2):649-58.
  22. Yang X, Wu Z, Zheng J, Lei H, Liu L, Chen W. Multi objective optimization of composite laminate repaired by patches in considering static strength and fatigue life. Mech Adv Mater Struct. 2024;1-21.
  23. Peng X, Guo Y, Li J, Wu H, Jiang S. Multiple objective optimization design of hybrid composite structures considering multiple-scale uncertainties. Compos Struct. 2022;292:115658.
  24. He Y, Lu D, Li Z, Lu D. Multi-objective optimization of the low-pressure casting of large-size aluminum alloy wheels through a systematic optimization idea. Materials (Basel). 2023; 16(18):6223.
  25. Wang G, Deng J, Lei J, Tang W, Zhou W, Lei Z. Multi-Objective Optimization of Laser Cleaning Quality of Q390 Steel Rust Layer Based on Response Surface Methodology and NSGA-II Algorithm. Materials (Basel). 2024;17(13):3109.
  26. Limmun W, Chomtee B, Borkowski JJ. Robust D-Optimal Mixture Designs Under Manufacturing Tolerances via Multi-Objective NSGA-II. Mathematics. 2025;13(18):2950.
  27. Wang Q, Wang L, Huang W, Wang Z, Liu S, Savič DA. Parameterization of NSGA-II for the optimal design of water distribution systems. Water. 2019;11(5):971.
  28. Liu Y, Meng J, Li T. Structural Optimization of a Giant Magnetostrictive Actuator Based on BP-NSGA-II Algorithm. In: Actuators. 2024; 293.
  29. Reddy J. Analysis of functionally graded plates. Int J Numer Methods Eng. 2000;47(1 -3):663-84.
  30. Nguyen TK. A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials. Int J Mech Mater Des. 2015;11:203-19.
  31. Alam MM, Barsoum Z, Jonsén P, Häggblad HÅ, Kaplan A. Fatigue behaviour study of laser hybrid welded eccentric fillet joints: Part II: State-of-the-art of fracture mechanics and fatigue analysis of welded joints. In: Nordic Conference on Laser Processing of Materials: 24/08/2009-26/08/2009. 2009.
  32. Kumar B, Sharma K, Kumar D. Evaluation of stress intensity factor in functionally graded material (FGM) plate under mechanical loading. Indian Soc Theor Appl Mech (ISTAM), Jaipur; 2015.
  33. Baghdadi M, Serier B, Salem M, Zaoui B, Kaddouri K. Modeling of a cracked and repaired Al 2024T3 aircraft plate: effect of the composite patch shape on the repair performance: Effect of the composite patch shape on the repair performance. Frat ed Integrità Strutt. 2019;13(50):68-85.
  34. Chama M, Moulai-Khatir D, Hamza B, Slamene A, Mokhtari M. Novel FGM-USDFLD approach in Graded Cohesive Zone Modeling (GCZM): Predicting debonding and crack propagation in composite-patched notched plates. Mech Adv Mater Struct. 2024;1-16.
  35. Peng X, Atroshchenko E, Kerfriden P, Bordas S. Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng. 2017;316:151-85.
  36. Roychowdhury S, Dodds Jr RH. A numerical investigation of 3-D small-scale yielding fatigue crack growth. Eng Fract Mech. 2003;70(17):2363-83.
  37. Kirthan LJ, Hegde R, Suresh BS, Kumar RG. Computational analysis of fatigue crack growth based on stress intensity factor approach in axial flow compressor blades. Procedia Mater Sci. 2014;5:387-97.
  38. Deb K. Mutliobjective Optimization using Evolutionary Algorithms. Journal of Physics A: Mathematical and Theoretical. 2011 ;44: 1689-1699.
  39. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182-97.
  40. Worthington M, Chew HB. Crack path predictions in heterogeneous media by machine learning. J Mech Phys Solids. 2023;172:105188.
  41. Zhang S, Li R, Lu D, Xu L, Xu W. Multi-objective optimization design of assembled wheel lightweight based on implicit parametric method and modified NSGA-II. IEEE Access. 2023;11:71387-406.
  42. Poirier JD, Vel SS, Caccese V. Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm. Eng Struct. 2013;49:508-24.
DOI: https://doi.org/10.2478/ama-2025-0087 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 779 - 789
Submitted on: Jan 28, 2025
|
Accepted on: Oct 19, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Soufiane ABBAS, Mohamed Ikhlef CHAOUCH, Hinde LAGHFIRI, Mohamed BENGUEDIAB, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.