Have a personal or library account? Click to login
Slippage Down on Rolling Mobile Robots While Overcoming Inclined Obstacles Cover

Slippage Down on Rolling Mobile Robots While Overcoming Inclined Obstacles

Open Access
|Dec 2025

References

  1. Zhang S, Zhao X, Su W, Wu H, Dai Z, Chen Z. The design of suspension mechanism and analysis of obstacle ability to rescue robots. En: Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2018. Advances in Intelligent Systems and Computing Deng K, Yu Z, Patnaik S, Wang J. Springer; 2018: 677-685.
  2. Hadi NH, Younus KK. Path tracking and backstepping control for a wheeled mobile robot (WMR) in a slipping environment. IOP Conference Series: Materials Science and Engineering. 2020; 671: 1-17.
  3. Wang Z, Zhao J, Zeng G. Modeling, simulation and implementation of all terrain adaptive five DOF robot. Sensors. 2022; 22(6991): 1-29.
  4. Boeder P, Soares C. Mars 2020: mission, science objectives and build. Proc. SPIE 11489, Systems Contamination: Prediction, Control, and Performance. 2020; 11489: 1-17.
  5. Bluethmann B, Herrera E, Hulse A, Figuered J, Junkin L, Markee M, et al. An active suspension system for lunar crew mobility. En: IEEE Aerospace ConferenceBig Sky; 2010:1-9.
  6. Yehezkel L, Berman S, Zarrouk D. Overcoming obstacles with a reconfigurable robot using reinforcement learning. IEEE Access. 2020; 8: 217541-217553.
  7. Song Z, Luo Z, Wei G, Shang J. Design and analysis of a six-wheeled companion robot with mechanical obstacle-overcoming adaptivity. Mechanical Sciences. 2021; 12(2): 1115–1136.
  8. Medeiros V, Jelavic E, Bjelonic M, Siegwart R, Meggiolaro M, Hutter m. Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain. IEEE Robotics and Automation Letters. 2020; 5(3): 4172-4179.
  9. Huang Y, Meng R, Yu J, Zhao Z, Zhang X. Practical obstacle-over-coming robot with a heterogeneous sensing system: design and experiments. Machines. 2022; 10(289):1-19.
  10. Jelavic E, Hutter M. Whole-body motion planning for walking excavators. En: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)Macau. 2019;2292-2299.
  11. García JM, Duarte F. Overcoming obstacles with variable geometry and inclination by rolling mobile robots using their arm. Robotica. 2025; 43(5): 1608-1639.
  12. Abo-Shanab RF, Sepehri N. Dynamic modeling of tip-over stability of mobile manipulators considering the friction effects. Robotica. 2005; 23(2): 189-196.
  13. García JM, Bohórquez A, Valero A. Efecto de la suspensión en el direccionamiento de un robot skid steer moviéndose sobre terrenos duros con diferente rugosidad. Ingenierías USBMed. 2020; 11(1): 18-30.
  14. Bevly DM, Ryu J, Gerdes JC. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Transactions on intelligent transportation systems. 2006; 7(4): 483-493.
  15. Inotsume H, Sutoh M, Nagaoka K, Nagatani K, Yoshida K. Slope traversability analysis of reconfigurable planetary rovers. En: 2012 IEEE/RSJ International Conference on Intelligent Robots and SystemsVilamoura; 2012, 4470-4476.
  16. Reina G, Ishigami G, Nagatani K, Yoshida K. Vision-based estimation of slip angle for mobile robots and planetary rovers. En: 2008 IEEE International conference on robotics and automationPasadena; 2008; 486-491.
  17. Heverly M, Matthews J, Lin J, Fuller D, Maimone M, Biesiadecki J, et al. Traverse performance characterization for the mars science laboratory rover. Journal of Field Robotics. 2013; 30(6): 835-846.
  18. Li W, Gao H, Yang H, Li N, Ding L, Deng Z. A method to online etimate weel’s sippage for plnetary rover. En: 11th World congress on intelligent control and automationShenyang. 2014; 2469-2474.
  19. Rabiee S, Biswas J. A friction-based kinematic model for skid-steer wheeled mobile robots. En: 2019 International Conference on Robotics and Automation (ICRA)Montreal. 2019; 8563-8569.
  20. Ding L, Gao H, Deng Z, Guo J, Liu G. Longitudinal Slip versus skid of planetary rovers’ wheels traversing on deformable slopes. En: IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo. 2013;2842-2848.
  21. Song T, Xi F, Guo S, Tu X, Li X. Slip Analysis for a Wheeled Mobile Manipulator. Journal of Dynamic Systems Measurement and Control. 2018; 140: 1-12.
  22. Thueer T, Siegwart R. Mobility evaluation of wheeled all-terrain robots. Robotics and Autonomous Systems. 2010; 58(5): 508-519.
  23. García JM, Martínez JL, Mandow A, García-Cerezo A. Slide-Down Prevention for Wheeled Mobile Robots on Slopes. En: 3rd International Conference on Mechatronics and Robotics Engineering Paris. 2017; 1-6.
  24. Cholewínski M, Mazur A, Domski W. Preliminary experimental results of factitious force method implementation for the mobile platform REX. En: 21st International Conference on Methods and Models in Automation and Robotics. Szczecin; 2016.
  25. Dimastrogiovanni M, Cordes F, Reina G. Terrain sensing for planetary rovers. En: Proceedings of the 3rd IFToMM ITALY Conference. 2020;1-5.
  26. Lucet E, Lanain R, Grand C. Dynamic path tracking control of a vehicle on slippery terrain. Control Engineering Practice. 2015; 42: 60-73.
  27. Sivaraman D, Pillai BM, Ongwattanakul S, Suthakorn J. Energy optimized path planning and decision making for multiple robots in rescue operations. En: 48th Annual Conference of the IEEE Industrial Electronics Society. 2022;1-6.
  28. Wu H, Karkoub M. Frictional forces and torques compensation based cascaded sliding-mode tracking control for an uncertain omnidirectional mobile robot. Measurement and Control. 2022;55(3-4): 178-188.
  29. Fiedén M, Bałchanowski J. A mobile robot with omnidirectional tracks—design and experimental research. Applied sciences. 2021; 11(11778): 1-23.
  30. Gürgöze G, Türkoglu I. A novel energy consumption model for autonomous mobile robot. Turkish Journal of Electrical Engineering & Computer Sciences. 2022; 30: 216-232.
  31. Kim J, Jeong H, Lee D. Performance optimization of a passively articulated mobile robot by minimizing maximum required friction coefficient on rough terrain driving. Mechanism and machine theory. 2021; 164(104368): 1-21.
  32. Higashino M, Fujimoto H, Takase Y, Nakamura H. Step climbing control of wheeled robot based on slip ratio taking account of work load shift by anti-dive force of suspensions and accerelation. En: AMC2014Yokohama. 2014;167-172.
  33. Bruzzone L, Baggetta M, Nodehi S, Bilancia P, Fanghella P. Functional design of a hybrid leg-wheel-track ground mobile robot. Machines. 2021; 9(10):1-11.
  34. Shin J, Son D, Kim Y, Seo T. Design exploration and comparative analysis of tail shape of tri-wheel-based stair-climbing robotic platform. Scientific Reports. 2022; 12(19488): 1-19.
  35. Ma J, Cheng J, Zuang D. Analysis of Sojourner’s six-wheeled rocker suspension appended with driving moment. En:International Conference on Information Engineering and Computer Science. Wuhan. 2009; 1-4.
  36. Bruzzone L, Fanghella P. Functional redesign of Mantis 2.0, a hybrid leg-wheel robot for surveillance and inspection. J Intell Robot Syst. 2016; 81:215–230.
  37. Liu Y, Liu G. Track-stair and vehicle-manipulator interaction analysis for tracked mobile manipulators climbing stairs. En: IEEE Conference on Automation Science and Engineering Washington. 2008; 157-162.
  38. Li N, Ma S, Li B, Wang M, Wang Y. An online stair-climbing control method for a transformable tracked robot. En: IEEE International conference on Robotics and Automation River Centre. 2012; 923-929.
  39. Yu S, Wang T, Wang Y, Zhi D, Yao C, Wang Z, et al. A tip-over and slippage stability criterion for stair-climbing of a wheelchair robot with variable geometry single tracked mechanism. En: IEEE International Conference on Information and Automation Shenyang. 2012; 88-93.
  40. Morales J, Martínez J, Mandow A, Serón J, García-Cerezo A, Pequeño-Boter A. Center of gravity estimation and control for a field mobile robot with a heavy manipulator. En: IEEE International Conference on MechatronicsMálaga. 2009; 1-6.
  41. Diaz-Calderon A, Kelly A. Development of a terrain adaptive stability prediction system for mass articulating mobile robots. En Yuta S, Asama H, Thrun S, Prassler E, Tsubouchi T. Field and Service Robotics. Berlín: Springer Berlin Heidelberg. 2006; 343-354.
  42. Serón J, Martínez JL, Mandow A, García-Cerezo A, Morales J, Reina A, et al. Terrace climbing of the Alacrane mobile robot with cooperation of its onboard arm. En: 12th IEEE International Workshop on Advanced Motion Control Sarajevo. 2012; 1-6.
  43. García JM, Medina I, Martínez JL, García-Cerezo A, Linares A, Porras C. Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática Industrial. 2017; 14:174–183.
  44. Giesbers J. Contact Mechanics in MSC ADAMS. Bachelor Thesis. Enschede.
  45. García JM, Valero A, Bohórquez A. Suspension effect in tip-over stability and steerability of robots moving on terrain discontinuities. Revista Iberoamericana de Automática e Informática Industrial. 2020;17: 202-214.
  46. Vivas E, Allende-Cid H, Salas R. A systematic review of statistical and machine learning methods for electrical power forecasting with reported MAPE score. Entropy. 2020; 22(1412):1-24.
DOI: https://doi.org/10.2478/ama-2025-0065 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 568 - 584
Submitted on: Jan 27, 2025
Accepted on: Sep 28, 2025
Published on: Dec 19, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jesús M. GARCÍA, Franklyn G. DUARTE, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.