Have a personal or library account? Click to login
Exploring Jacobi Elliptic and Periodic Solitary Wave Solutions for the Family of 3-D WBBM Equations Through the Generalized Approach Cover

Exploring Jacobi Elliptic and Periodic Solitary Wave Solutions for the Family of 3-D WBBM Equations Through the Generalized Approach

Open Access
|Sep 2025

References

  1. Qasim M, Yao F, Baber MZ, Younas U. Investigating the higher dimensional kadomtsev-petviashvili-sawada-kotera-ramani equation: Exploring the modulation instability, jacobi elliptic and soliton solutions. Physica Scripta. 2024.
  2. Hamza A, Suhail M, Alsulami A, Mustafa A, Aldwoah K, Saber H. Exploring soliton solutions and chaotic dynamics in the (3+1)-dimensional wazwaz-benjamin-bona-mahony equation: A generalized rational exponential function approach. Fractal and Fractional. 2024:592.
  3. Rahman Z, Ali MZ, Harun-Or-Roshid, Ullah MS. Analytical solutions of two space-time fractional nonlinear models using jacobi elliptic function expansion method. 2021.
  4. Alam MN, Hafez MG, Akbar MA, Harun-Or Roshid. Exact traveling wave solutions to the (3+1)-dimensional mkdv-zk and the (2+1)-dimensional burgers equations via exp(-ϕ(ξ)-expansion method. Elsevier BV. 2015.
  5. Hafez MG. Exact solutions to the (3+1)-dimensional coupled kleingordon-zakharov equation using exp(-ϕ(ξ)-expansion method. Elsevier BV. 2016.
  6. Akbar MA, Ali NHM, Zayed EME. A generalized and improved (G'/G)-expansion method for nonlinear evolution equations. Hindawi Publishing Corporation. 2012.
  7. Alzaidy JF. The (G'/G)-expansion method and travelling wave solutions for some nonlinear pdes. Am J Math Anal. 2013;1(3):28–32.
  8. Li X. Applications of F-expansion to periodic wave solutions for kdv equation.
  9. Li BA, Wang ML. Applications of f-expansion method to the coupled kdv system. 2005.
  10. Almatrafi M. Solitary wave solutions to a fractional model using the improved modified extended tanh-function method. Fractal and Fractional. 2023:252.
  11. Zahran EHM, Khater MMA. Modified extended tanh-function method and its applications to the bogoyavlenskii equation. Applied Mathematical Modelling. 2016;40(3):1769–1775.
  12. Kumar S, Mohan B. A novel and efficient method for obtaining Hirota's bilinear form for the nonlinear evolution equation in (n+1) dimensions. Partial Differential Equations in Applied Mathematics. 2022;5:100274.
  13. Ma WX. Soliton solutions by means of Hirota bilinear forms. Partial Differential Equations in Applied Mathematics. 2022;5:100220.
  14. Mahak N, Akram G. Extension of rational sine-cosine and rational sinhcosh techniques to extract solutions for the perturbed nlse with kerr law nonlinearity. The European Physical Journal Plus. 2019;134.
  15. Joseph S. Exact traveling wave doubly periodic solutions for generalized double sine-gordon equation. International Journal of Applied and Computational Mathematics. 2022;8.
  16. Ray S. New analytical exact solutions of time fractional kdv-kzk equation by kudryashov methods. Chinese Physics B. 2016;25:040204.
  17. Sadighi A, Ganji DD. Exact solutions of nonlinear diffusion equations by variational iteration method. Computers Mathematics with Applications. 2007;54:1112–1121.
  18. Sahoo S, Ray S, Abdou M. New exact solutions for time-fractional kaup-kupershmidt equation using improved (G'/G)-expansion and extended (G'/G)-expansion methods. Alexandria Engineering Journal. 2020;59.
  19. Naher H, Abdullah FA. New generalized and improved (G'/G)-expansion method for nonlinear evolution equations in mathematical physics. Journal of the Egyptian Mathematical Society. 2014;22(3):390–395.
  20. Yang XF, Deng ZC, Wei Y. A riccati-bernoulli sub-ode method for nonlinear partial differential equations and its application. Advances in Difference Equations. 2015.
  21. Kumar S, Kumar A, Wazwaz AM. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. European Physical Journal Plus. 2020;135.
  22. Wazwaz AM. Exact soliton and kink solutions for new (3+1)-dimensional nonlinear modified equations of wave propagation. Open Engineering. 2017;7(1):169–174.
  23. Javeed S, Imran T, Ahmad H, Tchier F, Zhao YH. New soliton solutions of modified (3+1)-d wazwaz–benjamin–bona–mahony and (2+1)-d cubic klein–gordon equations using first integral method. Open Physics. 2023;21.
  24. Zayed EME, Abdelaziz MAM. The modified exp-function method and its applications to the generalized k (n, n) and bbm equations with variable coefficients. Iranian Journal of Science. 2014;36:359–365.
  25. Hamza AE, Suhail M, Alsulami A, Mustafa A, Aldwoah K, Saber H. Exploring soliton solutions and chaotic dynamics in the (3+1)-dimensional wazwaz–benjamin–bona–mahony equation: A generalized rational exponential function approach. Fractal and Fractional. 2024;8(10).
  26. Mamun AA, Ananna SN, An T, Asaduzzaman M, Rana MS. Sine-Gordon expansion method to construct the solitary wave solutions of a family of 3D fractional WBBM equations. Results in Physics. 2022;40:105845.
  27. Ullah N, Asjad MI, Hussanan A, Akgül A, Alharbi WR, Algarni H, Yahia IS. Novel waves structures for two nonlinear partial differential equations arising in the nonlinear optics via sardar-Sub-Equation method. Alexandria Engineering Journal. 2023;71:105–113.
  28. Demirbilek U. On the solitary wave solutions of different versions of fractional 3d-wazwaz–benjamin–bona–mahony equations. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22.
  29. Akram, Seadawy RA, Rizvi STR, Younis M, Althobaiti S, Sayed S. Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves. Results in Physics. 2021;20.
  30. Siddique I, Mehdi KB, Jarad F, Elbrolosy ME, Elmandouh AA. Novel precise solutions and bifurcation of traveling wave solutions for the nonlinear fractional (3 + 1)-dimensional wbbm equation. International Journal of Modern Physics B. 2023;37(02):2350011.
  31. Bilal M, Ahmad J, et al. New exact solitary wave solutions for the 3d-fwbbm model in arising shallow water waves by two analytical methods. Results in Physics. 2021;25:104230.
  32. Ali A, Ahmad J, Javed S. Solitary wave solutions for the originating waves that propagate of the fractional wazwaz–benjamin–bona–mahony system. Alexandria Engineering Journal. 2023;69:121–133.
  33. Ahmad J, Rani S, Turki NB, Shah NA. Novel resonant multi-soliton solutions of time fractional coupled nonlinear schrödinger equation in optical fiber via an analytical method. Results in Physics. 2023;52:106761.
  34. Qasim M, Yao F, Baber MZ, Younas U. Investigating the higher dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation: exploring the modulation instability, Jacobi elliptic and soliton solutions. Physica Scripta. 2025;100(2):025215.
  35. Farooq A, Khan MI, Nisar KS, Shah NA. A detailed analysis of the improved modified Korteweg-de Vries equation via the Jacobi elliptic function expansion method and the application of truncated M-fractional derivatives. Results in Physics. 2024;59:107604.
  36. Khan MI, Asghar S, Sabi'u J. Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation. Optical and Quantum Electronics. 2022;54(11):734.
  37. Khan MI, Khan A, Farooq A. Analyzing the Kuralay-II equation: bifurcation, chaos, and sensitivity insights through conformable derivative and Jacobi elliptic function expansion. Physica Scripta. 2024;99(9):095210.
  38. Khan MI, Faridi WA, Murad MAS, Iqbal M, Myrzakulov R, Umur-zakhova Z. The formation and propagation of soliton wave profiles for the Shynaray-IIA equation. acta mechanica et automatica. 2025;19(1).
  39. El-Sabbagh M, Ali A. New generalized jacobi elliptic function expansion method. Communications in Nonlinear Science and Numerical Simulation. 2008;13:1758–1766.
  40. Farooq A, Ma WX, Ishfaq M. Exploring exact solitary wave solutions of kuralay-ii equation based on the truncated m-fractional derivative using the jacobi elliptic function expansion method. Optical and Quantum Electronics. 2024;56.
  41. Al-Muhiameed Z, Abdel-Salam E. Research article generalized jacobi elliptic function solution to a class of nonlinear schrodinger-type equations. Journal of Applied Mathematics. 2011;11.
  42. Lai S, Lv X, Shuai M. The Jacobi elliptic function solutions to a generalized Benjamin-Bona-Mahony equation. Mathematical and computer Modelling. 2009;49(1-2):369–378.
DOI: https://doi.org/10.2478/ama-2025-0048 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 406 - 425
Submitted on: Feb 24, 2025
Accepted on: Jul 15, 2025
Published on: Sep 5, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Muhammad Ishfaq KHAN, Kalim ULLAH, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.