Have a personal or library account? Click to login
Exploring Jacobi Elliptic and Periodic Solitary Wave Solutions for the Family of 3-D WBBM Equations Through the Generalized Approach Cover

Exploring Jacobi Elliptic and Periodic Solitary Wave Solutions for the Family of 3-D WBBM Equations Through the Generalized Approach

Open Access
|Sep 2025

Figures & Tables

Fig. 1.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,1(x, y, z) are presented for the parameter values k = 0.5, r = 1, p = 2, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,1(x, y, z) are presented for the parameter values k = 0.5, r = 1, p = 2, q = –2, and y = z = 1

Fig. 2.

The 3-D visualization, contour plot, and 2-D graphical representation of v1,3(x, y, z) are presented for the parameter values k = 0.5, r = 0.5, p = 2, q = 2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of v1,3(x, y, z) are presented for the parameter values k = 0.5, r = 0.5, p = 2, q = 2, and y = z = 1

Fig. 3.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,4(x, y, z) are presen-ted for the parameter valuesk = 0.5, r = 0.5, p = 2, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,4(x, y, z) are presen-ted for the parameter valuesk = 0.5, r = 0.5, p = 2, q = –2, and y = z = 1

Fig. 4.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,5(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1, p = 2, q = 2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,5(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1, p = 2, q = 2, and y = z = 1

Fig. 5.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,11(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1.5, p = –2, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,11(x, y, z) are presen-ted for the parameter values k = 0.5, r = 1.5, p = –2, q = –2, and y = z = 1

Fig. 6.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,26(x, y, z) are presented for the parameter values r = 2.5, p = 2, q = 𠀓2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,26(x, y, z) are presented for the parameter values r = 2.5, p = 2, q = 𠀓2, and y = z = 1

Fig. 7.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,27(x, y, z) are pre-sented for the parameter values r = 3, p = 1.5, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,27(x, y, z) are pre-sented for the parameter values r = 3, p = 1.5, q = –2, and y = z = 1

Fig. 8.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,29(x, y, z) are presen-ted for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,29(x, y, z) are presen-ted for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

Fig. 9.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,40(x, y, z) are presented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,40(x, y, z) are presented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

Fig. 10.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,41(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,41(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = –2, and y = z = 1

Fig. 11.

The 3-D visualization, contour plot, and 2-D graphical representation of V1,43(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = 2, and y = z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V1,43(x, y, z) are pre-sented for the parameter values r = 1.8, p = 1.5, q = 2, and y = z = 1

Fig. 12.

The 3-D visualization, contour plot, and 2-D gra-phical representation of V2,1(x, y, z) are presented for the parameter values k = 0.5, r = –1, p = 2, q = 2, y = 1, and z = 1
The 3-D visualization, contour plot, and 2-D gra-phical representation of V2,1(x, y, z) are presented for the parameter values k = 0.5, r = –1, p = 2, q = 2, y = 1, and z = 1

Fig. 13.

The 3-D visualization, contour plot, and 2-D graphical representation of V2,3(x, y, z) are pre-sented for the parameter values k = 0.5, r = –1, p = 2, q = 1.5, y = 1, and z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V2,3(x, y, z) are pre-sented for the parameter values k = 0.5, r = –1, p = 2, q = 1.5, y = 1, and z = 1

Fig. 14.

The 3-D visualization, contour plot, and 2-D graphical representation of V3,1(x, y, z) are pre-sented for the parameter values k = 0.5, r = 1, p = 2, q = –2, y = 1, and z = 1
The 3-D visualization, contour plot, and 2-D graphical representation of V3,1(x, y, z) are pre-sented for the parameter values k = 0.5, r = 1, p = 2, q = –2, y = 1, and z = 1

Fig. 15.

The 3-D visualization, contour plot and 2-D graphical representation of V3,3(x, y, z) are presented for the parameter values k = 0.6, r = 0.5, p = 2, q = 2, and y = z = 1
The 3-D visualization, contour plot and 2-D graphical representation of V3,3(x, y, z) are presented for the parameter values k = 0.6, r = 0.5, p = 2, q = 2, and y = z = 1

The Jacobi elliptic function exhibit specific limiting behaviour as k → 0 and k → 1

No.Functionk → 1k → 0
1sn(v)tanh(v)sin(v)
2cn(v)sech(v)cos(v)
3dn(v)sech(v)1
4cd(v)1cos(v)
5sd(v)sinh(v)sin(v)
6nd(v)cosh(v)1
7dc(v)1sec(v)
8nc(v)cosh(v)sec(v)
9sc(v)sinh(v)tan(v)
10ns(v)coth(v)csc(v)
11ds(v)csch(v)csc(v)
12cs(v)csch(v)ct(v)

The following table summarizes all the potential solutions to equation (2_3) for the specific m2, m1, and m0 values that have been provided

NO.m2m1m0N
1k2–(1 + k2)1sn
2k2–(1 + k2)1cd
3k22k2 – 11 – k2cn
4–12 – k2k2 – 1dn
51–(1 + k2)k2ns
61–(1 + k2)k2dc
71 – k22k2 – 1k2nc
8k2 – 12 – k2–1nd
91 – k22 – k21sc
10k2(1 – k2)2k2 – 11sd
1112 – k21 – k2cs
1212k2 – 1-k2(1 – k2)ds
1314{{ - 1} \over 4}k2+12{{{k^2} + 1} \over 2}(1k2)24{{ - {{\left( {1 - {k^2}} \right)}^2}} \over 4}kcndn
1414{1 \over 4}2k2+12{{ - 2{k^2} + 1} \over 2}14{1 \over 4}nscs
151k24{{1 - {k^2}} \over 4}k2+12{{{k^2} + 1} \over 2}1k24{{1 - {k^2}} \over 4}ncsc
1614{1 \over 4}k222{{{k^2} - 2} \over 2}k44{{{k^4}} \over 4}nsds
17k24{{{k^2}} \over 4}k222{{{k^2} - 2} \over 2}k24{{{k^2}} \over 4}scicn
18k24{{{k^2}} \over 4}k222{{{k^2} - 2} \over 2}k24{{{k^2}} \over 4}sn1k2sncn{{sn} \over {\sqrt {1 - {k^2}sn \mp cn} }}
19k24{{{k^2}} \over 4}k222{{{k^2} - 2} \over 2}k24{{{k^2}} \over 4}kcnidn
2014{1 \over 4}12k22{{1 - 2{k^2}} \over 2}14{1 \over 4}sn1cn{{sn} \over {1 \mp cn}}
21k24{{{k^2}} \over 4}k222{{{k^2} - 2} \over 2}14{1 \over 4}sn1dn{{sn} \over {1 \mp dn}}
22k214{{{k^2} - 1} \over 4}k2+12{{{k^2} + 1} \over 2}k214{{{k^2} - 1} \over 4}dn1ksn{{dn} \over {1 \mp ksn}}
231k24{{1 - {k^2}} \over 4}k2+12{{{k^2} + 1} \over 2}k2+14{{ - {k^2} + 1} \over 4}cn1sn{{cn} \over {1 \mp sn}}
24(1k2)24{{{{\left( {1 - {k^2}} \right)}^2}} \over 4}k2+12{{{k^2} + 1} \over 2}14{1 \over 4}sndncn{{sn} \over {dn \mp cn}}
25k44{{{k^4}} \over 4}k222{{{k^2} - 2} \over 2}14{1 \over 4}cn1k2dn{{cn} \over {\sqrt {1 - {k^2} \mp dn} }}
DOI: https://doi.org/10.2478/ama-2025-0048 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 406 - 425
Submitted on: Feb 24, 2025
Accepted on: Jul 15, 2025
Published on: Sep 5, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Muhammad Ishfaq KHAN, Kalim ULLAH, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.