3.1.
Analysis of the first WBBM equation
Let the first three-dimensional WBBM equation be expressed as:
3.1
{\partial _t}u + {\partial _x}u + {\partial _y}{u^3} - \partial _{xzt}^3u = 0,
where ∂ represents partial derivative. Utilizing the wave transformation:
3.2
v(x,y,z,t) = v(\psi ),
where
\psi = p\;x\; + \;q\;y\; + \;r\;z\; - \;s\;t,
and substituting into Eq. (3.2) we obtain:
3.3
( - c\; + \;p){v^\prime } + \;q{\left( {{v^3}} \right)^\prime } + \;prc{v^{\prime \prime \prime }} = \;0.
Integrating Equation (3.3) w.r.t ψ yields:
3.4
( - c\; + \;p)v\; + \;q{v^3} + \;prc{v^{\prime \prime }} + \;C\; = \;0.
Here, the C acts as the arbitrary constant arising from integration. For simplicity, setting C = 0, we have:
3.5
( - c\; + \;p)v\; + \;q{v^3} + \;prc{v^{\prime \prime }} = \;\;0.
Considering the homogeneous balancing of the derivative component of maximum order v″ and the nonlinear component v3 in Eq. (3.5), it is clear that n = 1. Thus, the method suggests the following supplementary solution:
3.6
v(\psi ) = {b_0} + \;{b_1}N(\psi ).
Differentiating Eq. (3.6) with respect to ψ, we have:
3.7
{v^\prime }(\psi ) = b_1^\prime {N^\prime }(\psi ).
Substituting this into the governing equation, we get:
3.8
\matrix{
{{v^\prime }(\psi ) = {b_1}{{\left( {{m_2}{N^4}(\psi ) + {m_1}{N^2}(\psi ) + {m_0}} \right)}^{{1 \over 2}}}} \hfill \cr
{{v^{\prime \prime }}(\psi ) = {b_1}N(\psi )\left( {2{m_2}{N^2}(\psi ) + {m_1}} \right).} \hfill \cr
}
Substitute Eq. (3.8) and Eq. (3.7) into the equation
3.9
\matrix{
{ - s\;{b_0} - \;s{b_1}N(\psi ) + \;p{b_0} + \;p{b_1}N(\psi ) + qb_0^3 + } \hfill \cr
{3qb_0^2{b_1}N(\psi ) + 3q{b_0}b_1^2N{{(\psi )}^2} + qb_1^3N{{(\psi )}^3} + } \hfill \cr
{prs\;{b_1}N(\psi ){m_0} + 2prs{b_1}N(\psi ){m_2} = 0.} \hfill \cr
}
By collecting various powers of Ni(ψ), a subsequent set of algebraic equations is derived:
3.10
- s\;{b_0} + p\;{b_0} + q\;b_0^3 = 0,
3.11
- s\;{b_1} + p\;{b_1} + 3\;q\;b_0^2{b_1} + p\;r\;s\;{b_1}{m_1} = \;0,
3.12
3\;q\;{b_0}b_1^2 = 0,
3.13
q\;b_1^3 + \;2p\;r\;s\;{b_1}{m_2} = \;0.
The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.6):
3.14
{{\rm{b}}_0}\;{\rm{ = }}\;{\rm{0,}}
3.15
{b_1} = \pm \sqrt {{{2r\;{m_2}} \over { - q + q\;p\;r{m_1}}}p} ,
3.16
S = {p \over {1 - pr\;{m_1}}}.
The following solutions for the 3-D WBBM equation can be obtained by inserting the corresponding values into Eq. (3.6):
3.17
v(x,y,z,t) = \pm \sqrt {{{2r\;{m_2}} \over { - q + q\;p\;r\;{m_1}}}p} \;N(\;p\;x\; + \;q\;y\; + \;r\;z\, - \left. {{p \over {1 - p\;r{m_1}}}t} \right).
3.2.
Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)
Using the data provided in Table 1 and Table 2 and combining the corresponding values as per Eq. (3.6), we may derive the Jacobi elliptic function solutions which are of a periodic nature for Eq. (1.1) as shown below.3.18
{v_{1,1}}(x,y,z,t) = \pm \sqrt {{{ - 2{k^2}r} \over {\left( {pr\left( {{k^2} + 1} \right) + q} \right)}}} psn(px + qy + rz - \left. {{{pt} \over {1 + pr\left( {{k^2} + 1} \right)}}} \right),
3.19
{v_{1,2}}(x,y,z,t) = \pm \sqrt {{{ - 2{k^2}r} \over {\left( {pr\left( {{k^2} + 1} \right) + q} \right)}}} pcd(px\; + \;qy\; + \;rz\; - \left. {{{pt} \over {1 + pr\left( {{k^2} + 1} \right)}}} \right),
3.20
{v_{1,3}}(x,y,z,t) = \pm \sqrt {{{ - 2{k^2}r} \over {\left( {pr\left( {2{k^2} - 1} \right) + q} \right)}}} pcn(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( {2{k^2} - 1} \right) + 1}}} \right),
3.21
{v_{1,4}}(x,y,z,t) = \pm \sqrt {{{2r} \over {\left( {pr\left( {1 - {k^2}} \right) + q} \right)}}} pdn(px\; + \;qy\; + \;rz\; - \left. {{{pt} \over {{\mathop{\rm pr}\nolimits} \left( {2 - {k^2}} \right) + 1}}} \right),
3.22
{v_{1,5}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {\left( {q - pr\left( {{k^2} + 1} \right)} \right)}}} pns(px\;\; + \;\;qy\;\; + \;\;\left. {rz\; - {{pt} \over {1 - pr\left( {{k^2} + 1} \right)}}} \right),
3.23
{v_{1,6}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {q\left( {pr\left( {{k^2} + 1} \right) + 1} \right)}}} pdc(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( { - {k^2} - 1} \right) + 1}}} \right),
3.24
{v_{1,7}}(x,y,z,t) = \pm \sqrt {{{ - 2r\left( {{k^2} - 1} \right)} \over {q\left( {pr\left( {2{k^2} - 1} \right) - 1} \right)}}} pnc(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( {2{k^2} - 1} \right) + 1}}} \right),
3.25
{v_{1,8}}(x,y,z,t) = \pm \sqrt {{{ - 2r\left( {{k^2} - 1} \right)} \over {\left( {prq\left( {2{k^2} - 2} \right) + q} \right)}}} pnd(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( {2 - {k^2}} \right) + 1}}} \right),
3.26
{v_{1,9}}(x,y,z,t) = \pm \sqrt {{{2r\left( {{k^2} - 1} \right)} \over {\left( {prq\left( {{k^2} - 2} \right) + q} \right)}}} psc(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( {2 - {k^2}} \right) + 1}}} \right),
3.27
{v_{1,10}}(x,y,z,t) = \pm \sqrt {{{2{k^2}r\left( {{k^2} - 1} \right)} \over {\left( {prq\left( {2{k^2} - 1} \right) - q} \right)}}} psd(px\; + \;qy\; + \;\left. {rz - {{pt} \over {pr\left( {2{k^2} - 1} \right) + 1}}} \right),
3.28
{v_{1,11}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {\left( {q\left( {pr\left( {{k^2} - 2} \right) + 1} \right)} \right)}}} pcs(px\; + \;qy\; + \;\left. {rz\; - {{pt} \over {pr\left( {2 - {k^2}} \right) + 1}}} \right),
3.29
{v_{1,12}}(x,y,z,t) = \pm \sqrt {{{2r} \over {\left. {\left( {prq\left( {2{k^2} - 1} \right) - q} \right)} \right)}}} pds(px\; + qy + \left. {rz - {{pt} \over {pr\left( {2{k^2} - 1} \right) + 1}}} \right),
3.30
{v_{1,13}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {\left( {q\left( {pr\left( {{k^2} + 1} \right) - 2} \right)} \right)}}} p\;\left[ {kcn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {pr{{\left( {{k^2} + 1} \right)} \over 2} + 1}}} \right) \pm \;dn\left( {(px\; + \;qy\; + \;rz\; - {{pt} \over {pr{{\left( {{k^2} + 1} \right)} \over 2} + 1}}} \right)} \right],
3.31
{v_{1,14}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {\left( {q\left( {pr\left( {1 - 2{k^2}} \right) - 2} \right)} \right)}}} p\left[ {ns\left( {px + qy + rz - {{pt} \over {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}}}} \right) \pm cs\left( {x + qy + rz - {{pt} \over {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}}}} \right)p} \right],
3.32
{v_{1,15}}(x,y,z,t) = \pm \sqrt {{{ - r\left( {{k^2} - 1} \right)} \over {\left( {q\left( {pr\left( {{k^2} + 1} \right) - 2} \right)} \right)}}} \cdot\;p\;\left[ {nc\left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right) \pm sc\;\left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \right],
3.33
{v_{1,16}}(x,y,z,t) = \pm \sqrt {{r \over {\left( {prq\left( {{k^2} - 2} \right) - 2q} \right)}}} p\;\;\left[ {ns\left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right) \pm \;ds\;\left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \right],
3.34
{v_{1,17}}(x,y,z,t) = \pm \sqrt {{{{k^2}r} \over {\left( {q\left( {pr\left( {{k^2} - 2} \right) - 2} \right)} \right)}}} p\;\;\left[ {{\mathop{\rm sn}\nolimits} \left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right) \pm icn\left( {px\; + \;qy\; + \;rz\; - \;{{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \right],
3.35
{v_{1,18}}(x,y,z,t) = \pm \sqrt {{{{k^2}r} \over {\left( {q\left( {pr\left( {{k^2} - 2} \right) - 2} \right)} \right)}}} p{{sn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {\sqrt {\left( {1 - {k^2}} \right)} \pm cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)}},
3.36
{v_{1,19}}(x,y,z,t) = \pm \sqrt {{{{k^2}r} \over {\left( {pqr\left( {2{k^2} - 2} \right) + 2q} \right)}}} p\;\left[ {kcn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right) \pm idn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right)} \right],
3.37
{v_{1,20}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {\left( {prq\left( {1 - 2{k^2}} \right) + 2q} \right)}}} p{{sn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right)} \over {1 \pm cn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right)}},
3.38
{v_{1,21}}(x,y,z,t) = \pm \sqrt {{{{k^2}r} \over {\left( {pqr\left( {{k^2} - 2} \right) - 2q} \right)}}} p{{sn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {\sqrt {\left( {1 - {k^2}} \right)} \pm d\;n\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)}},
3.39
{v_{1,22}}(x,y,z,t) = \pm \sqrt {{{r\left( {{k^2} - 1} \right)} \over {q\left( {pr\left( {{k^2} + 1} \right) - 2} \right)}}} p{{dn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {1 \pm ksn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.40
{v_{1,23}}(x,y,z,t) = \pm \sqrt {{{ - \left( {r{k^2} - r} \right)} \over {\left( {pqr\left( {{k^2} + 1} \right) - 2q} \right)}}} p{{cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {1 \pm sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.41
{v_{1,24}}(x,y,z,t) = \pm \sqrt {{{ - r{{\left( {{k^2} - 1} \right)}^2}} \over {\left( {pqr\left( {{k^2} + 1} \right) - 2q} \right)}}} p{{sn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {dn\left( {px\; + \;qy\; + \;rz - {{pt} \over {\left( {1 - {{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right) \pm cn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1{{pr\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.42
{v_{1,25}}(x,y,z,t) = \pm \sqrt {{{{k^4}r} \over {\left( {q\left( {{\mathop{\rm pr}\nolimits} \left( {{k^2} - 2} \right) - 2} \right)} \right)}}} p{{cn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {\sqrt {\left( {1 - {k^2}} \right)} \pm dn\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {\left( {1 - {{pr\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)}}.
Tab. 2.
The Jacobi elliptic function exhibit specific limiting behaviour as k → 0 and k → 1
| No. | Function | k → 1 | k → 0 |
|---|
| 1 | sn(v) | tanh(v) | sin(v) |
| 2 | cn(v) | sech(v) | cos(v) |
| 3 | dn(v) | sech(v) | 1 |
| 4 | cd(v) | 1 | cos(v) |
| 5 | sd(v) | sinh(v) | sin(v) |
| 6 | nd(v) | cosh(v) | 1 |
| 7 | dc(v) | 1 | sec(v) |
| 8 | nc(v) | cosh(v) | sec(v) |
| 9 | sc(v) | sinh(v) | tan(v) |
| 10 | ns(v) | coth(v) | csc(v) |
| 11 | ds(v) | csch(v) | csc(v) |
| 12 | cs(v) | csch(v) | ct(v) |
3.2.1.
Solitary wave solutions
When k → 1, in this category, see in table 2, the solutions v1,7, v1,8, v1,9, v1,10, v1,15, v1,22, v1,23 and v1,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.43
{v_{1,26}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(2prq + q)}}} p\;tanh\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {2pr + 1}}} \right),
3.44
{v_{1,27}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq - q)}}} p\;sech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {pr + 1}}} \right),
3.45
{v_{1,28}}(x,y,z,t) = \pm \sqrt {{{2r} \over {( - prq + q)}}} p\;sech\left( {px\; + \;qy\; + \,rz\; - {{pt} \over {pr + 1}}} \right),
3.46
{v_{1,29}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(2prq + q)}}} p\;coth\left( {px\; + \;qy\; + \;rz\; - {{pt} \over { - 2pr + 1}}} \right),
3.47
{v_{1,30}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {( - prq + q)}}} p\;csch\left( {px\; + \;qy\; + \;rz\; - {{pt} \over { - pr + 1}}} \right),
3.48
{v_{1,31}}(x,y,z,t) = \pm \sqrt {{r \over {(prq - q)}}} p\;csch\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {pr + 1}}} \right),
3.49
{v_{1,32}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {(2prq - 2q)}}} p\;\left[ {sech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {pr + 1}}} \right) \pm sech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {pr + 1}}} \right)} \right],
3.50
{v_{1,33}}(x,y,z,t) = \pm \sqrt {{r \over {(prq + 2q)}}} p\;\left[ {coth\left( {px\; + \;qy\; + \;rZ\; - {{pt} \over {{1 \over 2}pr + 1}}} \right) \pm csch\;\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {{1 \over 2}pr + 1}}} \right)} \right],
3.51
{v_{1,34}}(x,y,z,t) = \pm \sqrt {{r \over {( - prq - 2q)}}} p\;\left[ {coth\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 + {1 \over 2}{\rm{pr}}}}} \right) \pm csch\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \right],
3.52
{v_{1,35}}(x,y,z,t) = \pm \sqrt {{r \over {( - prq - 2q)}}} p\;\left[ {tanh\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 + {1 \over 2}{\rm{pr}}}}} \right) \pm isech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \right],
3.53
{v_{1,36}}(x,y,z,t) = \pm \sqrt {{r \over {( - prq - 2q)}}} p{{tanh\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \over {sech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)}},
3.54
{v_{1,37}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {(prq + 2q)}}} p\;\left[ {sech\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 + {1 \over 2}{\rm{pr}}}}} \right) \pm isech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \right],
3.55
{v_{1,38}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {( - prq + 2q)}}} p{{tanh\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \over {1 \pm sech\left( {px\; + \;qy\; + \;rz - {{pt} \over {1 + {1 \over 2}pr}}} \right)}},
3.56
{v_{1,39}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {( - prq - 2q)}}} p{{tanh\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)} \over {1 \pm sech\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + {1 \over 2}pr}}} \right)}},
3.57
{v_{1,40}}(x,y,z,t) = \pm \sqrt {{r \over {( - prq - 2q)}}} p{{sech\left( {px + qy + rz - {{pt} \over {1 - {1 \over 2}pr}}} \right)} \over {sech\left( {px + qy + rz - {{pt} \over {1 - {1 \over 2}pr}}} \right)}}.
3.2.2.
Shock wave solutions
When k → 0, in this category see in table 2, the solutions v1,2, v1,3, v1,10, v1,17, v1,18, v1,21, and v1,25 become Zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.58
{v_{1,41}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq + q)}}} p\;csc\left( {px\; + \;qy\; + \;rz\; - {{pt} \over { - pr + 1}}} \right),
3.59
{v_{1,42}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq + q)}}} p\;sec\left( {px\; + \;qy\; + \;rz\; - {{pt} \over { - pr + 1}}} \right),
3.60
{v_{1,43}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq + q)}}} p\;sec\left( {px\; + \;qy\; + \;rz\; - {{pt} \over { - nr + 1}}} \right),
3.61
{v_{1,44}}(x,y,z,t) = \pm \sqrt {{r \over {(2prq - q)}}} p\;tan\left( {px + qy + rz - {{pt} \over {2pr + 1}}} \right),
3.62
{v_{1,45}}(x,y,z,t) = \pm \sqrt {{{2r} \over {(2prq - q)}}} p\;cot\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {2pr + 1}}} \right),
3.63
{v_{1,46}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq + q)}}} p\;csc(px\; + \;qy\; + \;rz\; - \left. {{{pt} \over { - pr + 1}}} \right),
3.64
{v_{1,47}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {(prq - 2q)}}} p\;\left[ {csc\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 - {1 \over 2}{\rm{pr}}}}} \right) \pm cot\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 - {1 \over 2}pr}}} \right)} \right],
3.65
{v_{1,48}}(x,y,z,t) = \pm \sqrt {{{ - r} \over {(prq - 2q)}}} p\;\left[ {sec\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 - {1 \over 2}{\rm{pr}}}}} \right) \pm tan\left( {px\; + \;qy\; + \;rz - {{pt} \over {1 - {1 \over 2}pr}}} \right)} \right],
3.66
{v_{1,49}}(x,y,z,t) = \pm \sqrt {{{ - 2r} \over {(prq + 2q)}}} p\;\left[ {csc\left( {px\; + \;qy\; + \;rz\; - {{{\rm{pt}}} \over {1 + {\rm{pr}}}}} \right) \pm csc\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 + pr}}} \right)} \right],
3.67
{{\bf{v}}_{{\bf{1,50}}}}{\bf{(x,y,z,t) = \pm }}\sqrt {{{\bf{r}} \over {{\bf{(prq - 2q)}}}}} {\bf{p}}{{{\bf{sin}}\left( {{\bf{px}}\;{\bf{ + }}\;{\bf{qy}}\;{\bf{ + }}\;{\bf{rz}}\;{\bf{ - }}{{{\bf{pt}}} \over {{\bf{1 - }}{{\bf{1}} \over {\bf{2}}}{\bf{pr}}}}} \right)} \over {{\bf{1 \pm cos}}\left( {{\bf{px}}\;{\bf{ + }}\;{\bf{qy}}\;{\bf{ + }}\;{\bf{rz}}\;{\bf{ - }}{{{\bf{pt}}} \over {{\bf{1 - }}{{\bf{1}} \over {\bf{2}}}{\bf{pr}}}}} \right)}}{\bf{,}}
3.68
{v_{1,51}}(x,y,z,t) = \pm \sqrt {{r \over {(prq - 2q)}}} p{{cos\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 - {1 \over 2}pr}}} \right)} \over {1 \pm sin\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 - {1 \over 2}pr}}} \right)}},
3.69
{v_{1,52}}(x,y,z,t) = \pm \sqrt {{r \over {(prq - 2q)}}} p{{sin\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 - {1 \over 2}pr}}} \right)} \over {1 \pm cos\left( {px\; + \;qy\; + \;rz\; - {{pt} \over {1 - {1 \over 2}pr}}} \right)}},
3.3.
Analysis of the Second WBBM Equation
Using the traveling wave transformation equation (3.2) into equation (1.2), we convert the nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE) of the following form:
3.70
( - s + r){v^\prime } + pv3 + pqs{v^{\prime \prime }} = 0.
By the balancing procedure, we find the value of n = 1. Thus, the ansatz solution has the following simplified form:
3.71
v(\psi ) = {c_0} + {c_1}N(\psi ).
Substituting equation (3.71) combine with equation (2.4) into (3.70), we get:
3.72
\matrix{
{ - s{c_0} - \;s{c^1}N(\psi ) + p{c_0} + p{c_1}N(\psi ) + qc_0^3 + } \hfill \cr
{3q\;c_0^2\;{c_1}N(\psi ) + \;3q\;{c_0}c_1^2N{{(\psi )}^2} + \;qc_1^3N{{(\psi )}^3} + } \hfill \cr
{p\;r\;s\;{c_1}N(\psi ){m_0} + \;2p\;r\;s\;{c_1}N(\psi ){m_2} = \;0.} \hfill \cr
}
By collecting various powers of Ni(ψ), a subsequent system of algebraic equations is derived:
3.73
- s{c_{\rm{0}}}\;{\rm{ + }}\;p{c_{\rm{0}}}\;{\rm{ + }}\;q{c_{\rm{0}}}{\rm{ = }}\;{\rm{0,}}
3.74
- s{c_1}\;{\rm{ + }}\;p{c_1}\;{\rm{ + 3}}q{c_{\rm{0}}}{c_1}{\rm{ + }}prs{c_1}{\rm{ }}{m_1}\;{\rm{ = }}\;{\rm{0,}}
3.75
3q{c_0}c_1^2 = \;0,
3.76
qc_1^3\; + \;2prs\;{c_1}{m_2}\; = \;0.
The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.71):
3.77
{c_{\rm{0}}}{\rm{ = }}\;{\rm{0,}}
3.78
{c_1} = \; \pm \sqrt {{{2qr\;{m_2}} \over { - 1\; + \;p\;q\;{m_1}}}} ,
3.79
S = {r \over {1 - \;p\;q\;{m_1}}}.
The following solutions for the first 3-D WBBM equation can be obtained by inserting the corresponding values into Eq. (3.71):
3.80
{v_{x,y,z,t}} = \; \pm \sqrt {{{2qr\;{m_2}} \over { - 1\; + \;p\;q\;{m_1}}}} \;p\;N\;(\;px\; + \;qy\; + \;rz\; - \;\left. {\sqrt {{{2qr\;{m_2}} \over { - 1 + \;p\;q\;{m_1}}}} } \right).
3.3.1.
Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)
Using the data provided in Tables 1 and 2, and combining the corresponding values as per Eq.(3.71), we may derive the Jacobi elliptic function solutions which are periodic for equation (1.3) as shown below.3.81
{v_{2,1}}(x,y,z,t) = \pm \;\sqrt {{{2qr\;{k^2}} \over { - 1 - pq\left( {{k^2} + 1} \right)}}} p\;sn\;(px\; + \;qy\; + \left. {rz - {r \over {1 + pq\left( {{k^2} + 1} \right)}}t} \right),
3.82
{v_{2,2}}(x,y,z,t) = \pm {\mkern 1mu} |\sqrt {{{2qr\;{k^2}} \over { - 1 - p\;q\left( {{k^2}\; + \;1} \right)}}} p\;cd(px\; + \;qy\; + \left. {rz - {r \over {1 + pq\left( {{k^2} + 1} \right)}}t} \right),
3.83
{v_{2,3}}(x,y,z,t) = \pm \sqrt {{{ - 2{k^2}qr} \over {\left( {pq\left( {2{k^2} - 1} \right) - 1} \right)}}} pcn\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2{k^2} - 1} \right)} \right)}}t} \right),
3.84
{v_{2,4}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over {\left( {pq\left( {2 - {k^2}} \right) - 1} \right)}}} pdn\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2 - {k^2}} \right)} \right)}}t} \right),
3.85
{v_{2,5}}(x,y,z,t) = \pm \sqrt {{{2qr} \over {\left( { - pq\left( {{k^2} + 1} \right) - 1} \right)}}} pns\left( {px + qy + rz - {r \over {\left( {1 + pq\left( {{k^2} + 1} \right)} \right)}}t} \right),
3.86
{v_{2,6}}(x,y,z,t) = \pm \sqrt {{{2qr} \over {\left( { - pq\left( {{k^2} + 1} \right) - 1} \right)}}} pdc\left( {px + qy + rz - {r \over {\left( {1 + pq\left( {{k^2} + 1} \right)} \right)}}t} \right),
3.87
{v_{2,7}}(x,y,z,t) = \pm \sqrt {{{ - 2qr\left( {{k^2} - 1} \right)} \over {\left( {pq\left( {2{k^2} - 1} \right) - 1} \right)}}} pnc\left( {px + qy + rz - {{rt} \over {\left( {1 - pq\left( {2{k^2} - 1} \right)} \right)}}} \right),
3.88
{v_{2,8}}(x,y,z,t) = \pm \sqrt {{{ - 2qr\left( {{k^2} - 1} \right)} \over {\left( {pq\left( {{k^2} - 2} \right) + 1} \right)}}} p\;nd\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2 - {k^2}} \right)} \right)}}t} \right),
3.89
{v_{2,9}}(x,y,z,t) = \pm \sqrt {{{ - 2qr\left( {{k^2} - 1} \right)} \over {\left( {pq\left( {{k^2} - 2} \right) + 1} \right)}}} p\;sc\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2 - {k^2}} \right)} \right)}}t} \right),
3.90
{v_{2,10}}(x,y,z,t) = \pm \sqrt {{{ - 2qr\left( {{k^2} - 1} \right)} \over {\left( {pq\left( {2{k^2} - 1} \right) - 1} \right)}}} p\;sd\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2{k^2} - 1} \right)} \right)}}t} \right),
3.91
{v_{2,11}}(x,y,z,t) = \pm \sqrt {{{2qr} \over {\left( {pq\left( {2 - {k^2}} \right) - 1} \right)}}} p\;cs\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2 - {k^2}} \right)} \right)}}t} \right),
3.92
{v_{2,12}}(x,y,z,t) = \pm \sqrt {{{2qr} \over {\left( {pq\left( {2{k^2} - 1} \right) - 1} \right)}}} p\;ds\left( {px + qy + rz - {r \over {\left( {1 - pq\left( {2{k^2} - 1} \right)} \right)}}t} \right),
3.93
{v_{2,13}}(x,y,z,t) = \pm \sqrt {{{ - qr} \over {\left( {pq\left( {{k^2} + 1} \right) - 2} \right)}}} p\left[ {kcn\left( {px + qy + } \right)rz - {r \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}t \pm dn\left( {px + qy + rz - {r \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}t} \right)} \right],
3.94
{v_{2,14}}(x,y,z,t) = \pm \sqrt {{{qr} \over {\left( {pq\left( { - 2{k^2} + 1} \right) - 2} \right)}}} p\left[ {ns\left( {px + qy + rz - {r \over {\left( {1 - {{pq\left( { - 2{k^2} + 1} \right)} \over 2}} \right)}}t} \right) \pm cs\left( {px + qy + rz - {r \over {\left( {1 - {{pq\left( { - 2{k^2} + 1} \right)} \over 2}} \right)}}t} \right)} \right],
3.95
{v_{2,15}}(x,y,z,t) = \pm \sqrt {{{\left( { - qr\left( {{k^2} - 1} \right)} \right)} \over {\left( {pq\left( {{k^2} + 1} \right) - 2} \right)}}} p\left[ {nc\left( {px + qy + rz - {r \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}t} \right) \pm sc\left( {px + qy + rz - {r \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}t} \right)}}t} \right)} \right],
3.96
{v_{2,16}}(x,y,z,t) = \pm \sqrt {{{qr} \over {\left( {pq\left( {{k^2} - 2} \right) - 2} \right)}}} p[ns(px + qy + \left. {rz - {r \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}t} \right) \pm ds(px + qy + rz - \left. {\left. {{r \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}t} \right)} \right],
3.97
{v_{2,17}}(x,y,z,t) = \pm \sqrt {{{{k^2}qr} \over {\left( {pq\left( {{k^2} - 2} \right) - 2} \right)}}} p[sn(px + qy + \left. {rz - {r \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}t} \right) \pm icn(px + qy + rz - \left. {\left. {{r \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}t} \right)} \right],
3.98
{v_{2,18}}(x,y,z,t) = \pm \sqrt {{{{k^2}qr} \over {\left( {pq\left( {{k^2} - 2} \right) - 2} \right)}}} p{{sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {\left( {\sqrt {\left( {1 - {k^2}} \right)} \pm cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \right.}},
3.99
{v_{2,19}}(x,y,z,t) = \pm \sqrt {{{ - qr} \over {\left( {pq\left( {2{k^2} - 1} \right) + 2} \right)}}} p[kcn(px + qy + \left. {rz - {r \over {\left( {1 - {{pq\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}t} \right) \pm idn(px + qy + rz - \left. {{r \over {\left( {1 - {{pq\left( {1 - 2{k^2}} \right)} \over 2}t} \right)}}t} \right),
3.100
{v_{2,20}}(x,y,z,t) = \pm \sqrt {{{ - qr} \over {\left( {pq\left( {2{k^2} - 1} \right) + 2} \right)}}} p{{sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right)} \over {1 \pm cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {1 - 2{k^2}} \right)} \over 2}} \right)}}} \right)}},
3.101
{v_{2,21}}(x,y,z,t) = \pm \sqrt {{{ - {k^2}qr} \over {\left( {pq\left( {{k^2} - 2} \right) - 2} \right)}}} p{{sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {1 \pm dn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)}},
3.102
{v_{2,22}}(x,y,z,t) = \pm \sqrt {{{qr\left( {{k^2} - 2} \right)} \over {\left( {pq\left( {{k^2} + 1} \right) - 2} \right)}}} p{{dn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {1 \pm ksn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.103
{v_{2,23}}(x,y,z,t) = \pm \sqrt {{{ - qr\left( {{k^2} - 2} \right)} \over {\left( {pq\left( {{k^2} + 1} \right) - 2} \right)}}} p{{cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {1 \pm sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.104
{v_{2,24}}(x,y,z,t) = \pm \sqrt {{{qr{{\left( {{k^2} - 2} \right)}^2}} \over {\left( {pq\left( {{k^2} + 1} \right) - 2} \right)}}} p{{sn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)} \over {dn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right) \pm cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} + 1} \right)} \over 2}} \right)}}} \right)}},
3.105
{v_{2,25}}(x,y,z,t) = \pm \sqrt {{{ - {k^4}qr} \over {\left( {pq\left( {{k^2} - 2} \right) - 2} \right)}}} p{{cn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \over {\left( {\sqrt {\left( {1 - {k^2}} \right)} \pm dn\left( {px + qy + rz - {{pt} \over {\left( {1 - {{pq\left( {{k^2} - 2} \right)} \over 2}} \right)}}} \right)} \right.}},
3.3.2.
Solitary wave type solutions
When k → 1, in this category see in table 2, the solution v2,7, v2,8, v2,9, v2,10, v2,15, v2,22, v2,23 and v2,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.106
{v_{2,26}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - 1 - 2pq}}} p\;tanh(px + qy + rz - \left. {{r \over {1 + 2pq}}t} \right),
3.107
{v_{2,27}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over {pq - 1}}} p\;sech(px + qy + rz - \left. {{r \over {1 - pq}}t} \right),
3.108
{v_{2,28}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over {pq - 1}}} p\;sech(px + qy + rz - \left. {{r \over {1 - pq}}t} \right),
3.109
{v_{2,29}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - 2pq - 1}}} p\;coth(px + qy + rz - \left. {{r \over {1 + 2pq}}t} \right),
3.110
{v_{2,30}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over {pq + 1}}} p\;csch(px + qy + rz - \left. {{r \over {1 + pq}}t} \right),
3.111
{v_{2,31}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - pq - 1}}} p\;csch(px + qy + rz - \left. {{r \over {1 + pq}}t} \right),
3.112
{v_{2,32}}(x,y,z,t) = \pm \;\sqrt {{{ - 2qr} \over {2pq - 2}}} p\;\left[ {sech\left( {px\; + \;qy\; + rz\; - \;{r \over {1 - pq}}t} \right)\; \pm \;sech\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - pq}}t} \right)} \right],
3.113
{v_{2,33}}\;(x,y,z,t) = \pm \;\sqrt {{{qr} \over { - pq - 2}}} p\;\left[ {coth\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 + {1 \over 2}pq}}t} \right)\; \pm \;csch\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 + {1 \over 2}pq}}t} \right)} \right],
3.114
{v_{2,34}}\;(x,y,z,t) = \pm \;\sqrt {{{qr} \over { - pq - 2}}} p\;\left[ {coth\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)\; \pm csch\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)} \right],
3.115
{v_{2,35}}\;(x,y,z,t) = \pm \;\sqrt {{{qr} \over {pq - 2}}} p\;\left[ {tanh\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)\; \pm \;csch\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)} \right],
3.116
{v_{{\rm{2,36}}}}{\rm{(}}x, y, z, t{\rm{) = }} \pm \;\sqrt {{{qr} \over { - pq - 2}}} p\;{{tanh\left( {px{\kern 1pt} \; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)} \over {sech\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)}},
3.117
{v_{2,37}}(x,y,z,t) = \pm \sqrt {{{ - qr} \over {pq + 2}}} p\;\left[ {sech\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)\; \pm \;isech\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over { - 1 - {1 \over 2}pq}}t} \right)} \right],
3.118
{v_{2,38}}(x,y,z,t) = \pm \sqrt {{{qr} \over {pq + 2}}} p{{tanh\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)} \over {1 \pm sech\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)}},
3.119
{v_{2,39}}(x,y,z,t) = \pm \sqrt {{{qr} \over { - pq - 2}}} p{{tanh\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)} \over {1 \pm sech\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)}},
3.120
{v_{2,40}}(x,y,z,t) = \pm \sqrt {{{qr} \over { - pq - 2}}} p{{sech\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)} \over {sech\left( {px + qy + rz + {r \over { - 1 - {1 \over 2}pq}}t} \right)}},
3.3.3.
Shock wave solutions
When k → 0, in this category see in table 2, the solutions v2,1, v2,2, v2,3, v2,10, v2,17, v2,18, v2,21 and v2,25 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.121
{v_{2,41}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - pq - 1}}} pcsc\left( {px + qy + rz - {r \over {1 + 2pq}}t} \right),
3.122
{v_{2,42}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - pq - 1}}} psec\left( {px + qy + rz - {r \over {1 + 2pq}}t} \right),
3.123
{v_{2,43}}(x,y,z,t) = \pm \sqrt {{{ - 2qr\left( {{k^2} - 1} \right)} \over { - pq - 1}}} psec\left( {px + qy + rz - {r \over {1 + 2pq}}t} \right),
3.124
{v_{2,44}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over { - 2pq + 1}}} p\;tan\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - 2\;pq}}t} \right),
3.125
{v_{2,45}}(x,y,z,t) = \pm \sqrt {{{ - 2qr} \over { - 2\;p\;q + 1}}} p\;cot\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - 2\;pq}}t} \right),
3.126
{v_{2,46}}(x,y,z,t) = \pm \sqrt {{{2qr} \over { - p\;q - 1}}} p\;csc\;\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 + 2pq}}t} \right),
3.127
{v_{2,47}}(x,y,z,t) = \pm \sqrt {{{qr} \over {pq - 2}}} p\;\left[ {csc\left( {px\; + \;qy\; + \;rz\; + \;{r \over {1 - {1 \over 2}pq}}t} \right) \pm \;cot\;\left( {px\; + \;qy\; + \;rz\; + {r \over {1 - {1 \over 2}pq}}t} \right)} \right],
3.128
{v_{2,48}}(x,y,z,t) = \pm \sqrt {{{qr} \over {pq - 2}}} p\;\left[ {sec\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over {1 - {1 \over 2}pq}}t} \right)\; \pm \;tan\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over {1 - {1 \over 2}pq}}t} \right)} \right],
3.129
{v_{2,49}}(x,y,z,t) = \pm \sqrt {{{qr} \over { - 2pq - 2}}} p\;\left[ {csc\;\left( {px\; + \;qy\; + \;rz\; + \;{r \over {1 + pq}}t} \right)\; \pm \;\left( {csc\;px\; + \;qy\; + \;rz\; + \;{r \over {1 + pq}}t} \right)} \right],
3.130
{v_{2,50}}(x,y,z,t) = \pm \sqrt {{{ - qr} \over { - pq + 2}}} p{{sin\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)} \over {1 \pm cos\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)}},
3.131
{v_{2,51}}(x,y,z,t) = \pm \sqrt {{{qr} \over {pq - 2}}} p{{cos\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)} \over {1 \pm sin\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)}},
1.132
{v_{2,52}}(x,y,z,t) = \pm \sqrt {{{qr} \over {pq - 2}}} p{{sin\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)} \over {cos\left( {px\; + \;qy\; + \;rz\; - \;{r \over {1 - {1 \over 2}pq}}t} \right)}},
3.4.
Analysis of the Second WBBM Equation
Using the traveling wave transformation Equation (3.2) into Equation (1.2), we convert the nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE) of the following form:
3.133
( - s + r)v' + p{v^3} + pqsv = 0.
By the balancing procedure, we find the value of n = 1. Thus, the ansatz solution has the following simplified form:
3.134
v(\psi )\; = \;{d_0} + {d_1}N(\psi ).
Substituting Eq. (2.4) in Eq.(3.134), we get
1.135
\matrix{
{ - s{d_0} - s{d_1}N(\psi ) + p{d_0} + p{d_1}N(\psi ) + qd_0^3 + } \hfill \cr
{3qd_0^2{d_1}N(\psi ) + 3q{d_0}c_1^2N{{(\psi )}^2} + qd_1^3N{{(\psi )}^3} + } \hfill \cr
{prs{d_1}N(\psi ){m_0} + 2prs{d_1}N(\psi ){m_2} = 0.} \hfill \cr
}
By collecting various powers of Ni(ψ), a subsequent system of algebraic equations is derived:
3.136
- s{d_0} + p{d_0} + qd_0^3 = 0,
3.137
- s{d_1} + p{d_1} + 3qd_0^2{d_1} + prs{d_1}{m_1} = 0,
3.138
3q{d_0}d_1^2 = 0,
3.139
qd_1^3 + 2prs{d_1}{m_2} = 0.
The system described above of algebraic equations is calculated through MAPLE, and we derive the roots of the coefficients involved in equation (3.134):
3.140
{d_0}\; = \;0,
3.141
{d_1} = \pm \sqrt {{{q{m_2}} \over { - r + r{p^2}{m_1}}}} p,
3.142
s = - {q \over { - 1 + {p^2}{m_1}}}.
The following solutions for the first 3-D WBBM equation can be obtained by inserting the corres- ponding values into Eq. (3.134):
3.143
v(x,y,z,t) = \pm \sqrt {{{q{m_2}} \over { - r + r{p^2}{m_1}}}} p\;N\;\left( {px\; + \;qy\; + \;rz\; + \;{q \over {{p^2}{m_1} - 1}}t} \right).
3.4.1.
Analytical periodic solutions in terms of Jacobi elliptic functions (JEF)
Using the data provided in tables 1 and 2, and combining the corresponding values as per Eq.(3.6), we may derive the Jacobi elliptic function solutions which are in a periodic nature for Eq (3.6) as shown below.3.144
{v_{3,1}}(x,y,z,t) = \pm \sqrt {{{ - {k^2}q} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) + r} \right)}}} p\;sn\;\left( {px\; + \;qy\; + rz + {q \over { - {p^2}\left( {{k^2} + 1} \right) - 1}}t} \right),
3.145
{v_{3,2}}(x,y,z,t) = \pm \sqrt {{{ - {k^2}q} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) + r} \right)}}} p\;cd\;\left( {px\; + \;qy\; + rz + {q \over { - {p^2}\left( {{k^2} + 1} \right) - 1}}t} \right),
3.146
{v_{3,3}}(x,y,z,t) = \pm \sqrt {{{ - {k^2}q} \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) - r} \right)}}} p\;cn\;\left( {px\; + \;qy\, + \;rz\; + {q \over {{p^2}\left( {2{k^2} - 1} \right) - 1}}t} \right),
3.147
{v_{3,4}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r\left( {2 - {k^2}} \right) - r} \right)}}} p\;dn\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{v^2}\left( {2 - {k^2}} \right) - 1}}t} \right),
3.148
{v_{3,5}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) + r} \right)}}} p\;ns\;\left( {px\; + \;qy\; + rz\; + {q \over { - {p^2}\left( {{k^2} + 1} \right) - 1}}t} \right),
3.149
{v_{3,6}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) + r} \right)}}} p\;dc\;\left( {px\; + \;qy\; + \;rz\; + {q \over { - {p^2}\left( {{k^2} + 1} \right) - 1}}t} \right),
3.150
{v_{3,7}}(x,y,z,t) = \pm \sqrt {{{ - q\left( {{k^2} - 1} \right)} \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) - r} \right)}}} p\;nc\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{p^2}\left( {2{k^2} - 1} \right) - 1}}t} \right),
3.151
{v_{3,8}}(x,y,z,t) = \pm \sqrt {{{ - q\left( {{k^2} - 1} \right)} \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) + r} \right)}}} p\;nd\;\left( {px\; + \;qy\; + \;rz\; + {{qt} \over {{p^2}\left( {2 - {k^2}} \right) - 1}}} \right),
3.152
{v_{3,9}}(x,y,z,t) = \pm \sqrt {{{q\left( {{k^2} - 1} \right)} \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) + r} \right)}}} p\;sc\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{p^2}\left( {2 - {k^2}} \right) - 1}}t} \right),
3.153
{v_{3,10}}(x,y,z,t) = \pm \sqrt {{{{k^2}q\left( {{k^2} - 1} \right)} \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) - r} \right)}}} p\;sd\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{p^2}\left( {2{k^2} - 1} \right) - 1}}t} \right),
3.154
{v_{3,11}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}\left( {{k^2}r - 2r} \right) + r} \right)}}} p\;cs\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{p^2}\left( {2 - {k^2}} \right) - 1}}t} \right),
3.155
{v_{3,12}}(x,y,z,t) = \pm \sqrt {{q \over {\left( {{p^2}r\left( {2{k^2} - 1} \right) - r} \right)}}} p\;ds\;\left( {px\; + \;qy\; + rz\; + {q \over {{p^2}\left( {2{k^2} - 1} \right) - 1}}t} \right),
3.156
{v_{3,13}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) - 2r} \right)}}} p\;\left[ {kcn\;\left( {px\; + \;qy\; + rz\; + {q \over {{{{p^2}\left( {{k^2} + 1} \right)} \over 2} - 1}}t} \right) \pm \;dn\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{{{p^2}\left( {{k^2} + 1} \right)} \over 2} - 1}}t} \right)} \right],
3.157
{v_{3,14}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r\left( { - 2{k^2} + 1} \right) - 2r} \right)}}} p\;ns\;\left[ {\left( {px\; + qy\, + rz\; + {q \over {{{{p^2}\left( { - 2{k^2} + 1} \right)} \over 2} - 1}}t} \right) \pm \;cs\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{{{p^2}\left( { - 2{k^2} + 1} \right)} \over 2} - 1}}t} \right)} \right],
3.158
{v_{3,15}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q\left( {1 - {k^2}} \right)} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) - 2r} \right)}}} p\;nc\;\left[ {\left( {px\; + qy\; + \;rz + {q \over {{{{p^2}\left( {{k^2} + 1} \right)} \over 2}}}t - 1} \right)\; \pm \;sc\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{{{p^2}\left( {{k^2} + 1} \right)} \over 2} - 1}}t} \right)} \right],
3.159
{v_{3,16}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r\left( {{k^2} - 2} \right) - 2r} \right)}}} p\;ns\;\left[ {\left( {px\; + \;qy\; + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)\; \pm \;ds\;\left( {px\; + \;qy\; + \,rz\; + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \right],
3.160
{v_{3,17}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}{k^2}q} \over {\left( {{p^2}r\left( {{k^2} - 2} \right) - 2r} \right)}}} p\;sn\;\left[ {\left( {px\; + \;qy\; + rz\; + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right) \pm \;icn\;\left( {px\; + \;qy\, + \,rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \right],
3.161
{v_{3,18}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}{k^2}q} \over {\left( {{p^2}r\left( {{k^2} - 2} \right) - 2r} \right)}}p} .\left[ {{{sn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \over {\sqrt {1 - {k^2}} \pm cn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)}}} \right],
3.162
{v_{3,19}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r\left( {1 - 2{k^2}} \right) - 2r} \right)}}p} \;kcn\;\left[ {\left( {pxqy + rz + {q \over {{{{p^2}\left( {2{k^2} - 1} \right)} \over 2} - 1}}t} \right) \pm \;idn\;\left( {px\; + \;qy\; + \;rz\; + {q \over {{{{p^2}\left( {2{k^2} - 1} \right)} \over 2} - 1}}t} \right)} \right],
3.163
{v_{3,20}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r\left( {1 - 2{k^2}} \right) - 2r} \right)}}} p\left[ {{{sn\left( {px + qy + rz + {q \over {{{{p^2}\left( {2{k^2} - 1} \right)} \over 2}}}t} \right)} \over {1 \pm cn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 1} \right)} \over 2} - 1}}t} \right)}}} \right],
3.164
{v_{3,21}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}{k^2}q} \over {\left( {{p^2}r\left( {{k^2} - 2} \right) - 2r} \right)}}} p\left[ {{{sn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \over {1 \pm dn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2}}}t} \right)}}} \right],
3.165
{v_{3,22}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q\left( {{k^2} - 1} \right)} \over {r\left( {{p^2}\left( {{k^2} + 1} \right) - 2} \right)}}} p\left[ {{{dn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \over {1 \pm ksn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)}}} \right],
3.166
{v_{3,23}}(x,y,z,t) = \pm \sqrt {{{q(1 - {k^2})} \over {2r({p^2}({k^2} + 1) - 1)}}p} [{{cn(px + qy + rz + {q \over {{{{p^2}({k^2} - 2)} \over 2}}}t - 1)} \over {1 \pm sn(px + qy + rz + {q \over {{{{p^2}({k^2} - 2)} \over 2}}}t)}}t],
3.167
{v_{3,24}}(x,y,z,t) = \pm \sqrt {{{q{{\left( {1 - {k^2}} \right)}^2}} \over {\left( {{p^2}r\left( {{k^2} + 1} \right) - 2r} \right)}}} \cdotp{{sn\left( {px + qy + rz - {{qt} \over {\left( {{{{p^2}\left( {{k^2} + 1} \right)} \over 2} - 1} \right)}}} \right)} \over {dn\left( {px + qy + rz - {{qt} \over {\left( {{{pq\left( {{k^2} + 1} \right)} \over 2} - 1} \right)}}} \right) \pm cn\left( {px + qy + rz - {{qt} \over {\left( {{{{p^2}\left( {{k^2} + 1} \right)} \over 2} - 1} \right)}}} \right)}},
3.168
{v_{3,25}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}{k^4}q} \over {\left( {{p^2}r\left( {{k^2} - 2} \right) - 2r} \right)}}} p\left[ {{{cn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} \over {\sqrt {\sqrt { - {k^2}} \pm dn\left( {px + qy + rz + {q \over {{{{p^2}\left( {{k^2} - 2} \right)} \over 2} - 1}}t} \right)} }}} \right],
3.4.2
Solitary wave type solutions
When k → 1, in this category see in table 2, the solution v3,7, v3,8, v3,9, v3,10, v3,15, v3,22, v3,23 and v3,24 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.169
{v_{3,26}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {2{p^2}r + r} \right)}}} p\;tanh\;\left( {px\; + \;qy\; + \;rz\; + {q \over { - 2{p^2} - 1}}t} \right),
3.170
{v_{3,27}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {2{p^2}r + r} \right)}}} p\;sech\;\left( {px\; + \;qy\; + \;rz\; + {q \over { - 2{p^2} - 1}}t} \right),
3.171
{v_{3,28}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r - r} \right)}}} p\;sech\;\left( {px\; + \;qy\; + \;rz + {q \over {{p^2} - 1}}t} \right),
3.172
{v_{3,29}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {2{p^2}r + r}}} p\;coth\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right),
3.173
{v_{3,30}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( { - {p^2}r + r} \right)}}} p\;csch\;\left( {px + qy + rz + {q \over {{p^2} - 1}}t} \right),
3.174
{v_{3,31}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {2{p^2}r - 2r} \right)}}} p\;\left[ {sech\;\left( {px + qy + rz + {q \over {{p^2} - 1}}t} \right)\; \pm \;sech\;\left( {px + qy + rz + {q \over {{p^2} - 1}}t} \right)} \right],
3.175
{v_{3,32}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\;\left[ {coth\;\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right) \pm \;csch\;\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \right],
3.176
{v_{3,33}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\;\left[ {coth\;\left( {px + qy + rz + {r \over {{{ - {p^2}} \over 2} - 1}}t} \right) \pm \;csch\;\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \right],
3.177
{v_{3,34}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\;\left[ {tanh\;\left( {px + qy + rz + {r \over {{{ - {p^2}} \over 2} - 1}}t} \right) \pm i\;sech\;\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \right],
3.178
{v_{3,35}}(x,y,z,t) = \pm \sqrt {{q \over {\left( { - {1 \over 2}{p^2}r - r} \right)}}} p\left[ {{{sn\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \over { \pm cn\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)}}} \right],
3.179
{v_{3,36}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\;\left[ {sech\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right) \pm i\;sech\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)} \right],
3.180
{v_{3,37}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\left[ {{{tanh\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)} \over {1 \pm sech\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)}}} \right],
3.181
{v_{3,38}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - {p^2}r - 2r} \right)}}} p\left[ {{{tanh\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \over {1 \pm sech\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)}}} \right],
3.182
{v_{3,39}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {r\left( { - {p^2} - 2} \right)}}} p\;\left[ {{{sech\left( {px + qy + rz + {{2q} \over {{p^2} - 2}}t} \right)} \over {sech\left( {px + qy + rz + {{2q} \over {{p^2} - 2}}t} \right)}}} \right]
3.4.3.
Shock wave solution
When k → 0, in this category see in table 2, the solutions v3,1, v3,2, v3,3, v3,4, v3,10, v3,17, v3,18, v3,21 and v3,25 become zero. The remaining solutions represent solitary wave solutions and can be determined as follows:
3.183
{v_{3,40}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r + r} \right)}}} p\;csc\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right),
3.184
{v_{3,41}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( {{p^2}r + r} \right)}}} p\;sec\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right),
3.185
{v_{3,42}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( { - {p^2}r - r} \right)}}} p\;sec\;\left( {px + qy + rz + {q \over { - {n^2} - 1}}t} \right),
3.186
{v_{3,43}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( { - 2{p^2}r + r} \right)}}} p\;tan\;\left( {px + qy + rz + {q \over {2{n^2} - 1}}t} \right),
3.187
{v_{3,44}}(x,y,z,t) = \pm \sqrt {{{ - q} \over {\left( { - 2{p^2}r + r} \right)}}} p\;cot\;\left( {px + qy + rz + {q \over {2{p^2} - 1}}t} \right),
3.188
{v_{3,45}}(x,y,z,t) = \pm \sqrt {{q \over {\left( { - {p^2}r - r} \right)}}} p\;csc\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right),
3.189
{v_{3,46}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r - 2r} \right)}}} p\;\left[ {csc\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)\; \pm \;cot\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)} \right],
3.190
{v_{3,47}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r - 2r} \right)}}} p\;\left[ {sec\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)\; \pm \;tan\;\left( {px + qy + rz + {q \over {{{{p^2}} \over 2} - 1}}t} \right)} \right],
3.191
{v_{3,48}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( { - 2{p^2}r - 2r} \right)}}} p\;\left[ {csc\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right)\; \pm \;csc\;\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right)} \right],
3.192
{v_{3,49}}(x,y,z,t) = \pm \sqrt {{{{1 \over 2}q} \over {\left( {{p^2}r - 2r} \right)}}} p\left[ {{{sin\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)} \over {1 \pm cos\left( {px + qy + rz + {q \over {{{ - {p^2}} \over 2} - 1}}t} \right)}}} \right],
3.193
{v_{3,50}}(x,y,z,t) = \pm \sqrt {{q \over {\left( {2{p^2}r - 2r} \right)}}} p\left[ {{{cos\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right)} \over {1 \pm sin\left( {px + qy + rz + {q \over { - {p^2} - 1}}t} \right)}}} \right],
3.194
{v_{3,51}}(x,y,z,t) = \pm \sqrt {{q \over {\left( {{p^2}r - 2r} \right)}}} p{{sin\left( {px + qy + rz - {{qt} \over {\left( {{{{p^2}} \over 2} - 2} \right)}}} \right)} \over {1 \pm cos\left( {px + qy + rz - {{qt} \over {\left( {{{{p^2}} \over 2} - 1} \right)}}} \right)}}.