Have a personal or library account? Click to login
Evaluation of Tensile Stress Relaxation of Selective Laser Sintering of PA2200 Material using the Maxwell-Wiechert Model Cover

Evaluation of Tensile Stress Relaxation of Selective Laser Sintering of PA2200 Material using the Maxwell-Wiechert Model

Open Access
|Jun 2025

Figures & Tables

Fig. 1.

Principle of SLS technology [2]
Principle of SLS technology [2]

Fig. 2.

Test specimens: a) dimensions, b) STL saving, c) print orientation
Test specimens: a) dimensions, b) STL saving, c) print orientation

Fig. 3.

Mechanical analogy of the Maxwell-Wiechert model [5,13]
Mechanical analogy of the Maxwell-Wiechert model [5,13]

Fig. 4.

Appearance of samples during stress relaxation tests
Appearance of samples during stress relaxation tests

Fig. 5.

Stress relaxation curves for PA2200 material; Ed56{\rm{E}}_{\rm{d}}^{56}: a) Ed56−Pd0E_d^{56} - P_d^0, b) Ed56−Pd45E_d^{56} - P_d^{45}, c) Ed56−Pd90E_d^{56} - P_d^{90}
Stress relaxation curves for PA2200 material; Ed56{\rm{E}}_{\rm{d}}^{56}: a) Ed56−Pd0E_d^{56} - P_d^0, b) Ed56−Pd45E_d^{56} - P_d^{45}, c) Ed56−Pd90E_d^{56} - P_d^{90}

Fig. 6.

Stress relaxation curves for PA2200 material: d)Ed76−Pd0E_d^{76} - P_d^0, e)Ed76−Pd45E_d^{76} - P_d^{45}, f)Ed76−Pd90E_d^{76} - P_d^{90}
Stress relaxation curves for PA2200 material: d)Ed76−Pd0E_d^{76} - P_d^0, e)Ed76−Pd45E_d^{76} - P_d^{45}, f)Ed76−Pd90E_d^{76} - P_d^{90}

Fig. 7.

Example of a Maxwell-Wiechert model fit to experimental curves: a) Ed56−Pd0−1E_d^{56} - P_d^0 - 1, b) Ed76−Pd0−1E_d^{76} - P_d^0 - 1
Example of a Maxwell-Wiechert model fit to experimental curves: a) Ed56−Pd0−1E_d^{56} - P_d^0 - 1, b) Ed76−Pd0−1E_d^{76} - P_d^0 - 1

Fig. 8.

Moduli of elasticity for PA 2200 material
Moduli of elasticity for PA 2200 material

Fig. 9.

Dynamic viscosity coefficients for PA 2200 material
Dynamic viscosity coefficients for PA 2200 material

Percentage of stress drop in PA2200 material

Rσ, %
Ed56
Pd0°45°90°
x¯ 20.9823.8522.61
SD1.864.860.56
Ed76
x¯ 24.523.624.1
SD0.40.50.4

Maxwell-Wichert model parameters and fit coefficients; Ed76

Lp.σ0, MPaσ1, MPaσ2, MPat1, st2, sChi2R2
Pd0
17.90.91.1132550.0004640.9960
26.70.80.8122510.0003770.9945
37.60.91.0122490.0004040.9954
47.00.80.9112420.0003820.9950
57.40.90.9122430.0004250.9947
67.50.91.0122480.0004120.9956
77.50.91.0122510.0004390.9952
87.70.91.0122450.0004340.9953
97.40.91.0112440.0004020.9952
107.70.91.0132460.0004340.9953
x¯ 7.40.91.0122470.0004180.9952
SD0.40.030.1140.0000270.0004
Pd45
17.80.91.092090.0002640.9971
27.10.80.9143370.0005580.9917
38.10.91.081930.0002260.9974
47.70.90.9143140.0005790.9925
57.90.91.092240.0002520.9970
67.10.80.891820.0003030.9953
76.70.80.9133300.0003430.9945
87.10.81.0174640.0006350.9908
97.40.81.0122640.0003950.9953
107.20.81.0122570.0003940.9952
x¯ 7.40.80.9122770.0003950.9947
SD0.40.040.13860.0001470.0023
Pd90
17.20.80.9122580.0003730.9949
27.90.91.0112520.0004150.9953
37.90.91.0122530.0004460.9952
47.90.91.0122530.0004300.9954
57.50.91.0122440.0004150.9953
67.40.91.0132390.0004440.9951
78.10.91.0122500.0004580.9953
87.60.90.9112510.0004140.9949
97.60.91.0122530.0004300.9951
107.91.01.0122480.0004820.9951
x¯ 7.70.91.0122500.0004310.9952
SD0.30.040.040.450.0000290.0001

Maxwell-Wichert model parameters and fit coefficients; Ed56

Lp.σ0, MPaσ1, MPaσ2, MPat1, st2, sChi2R2
Pd0
17.80.90.8112320.0003900.9942
28.40.70.8102520.0002990.9945
38.40.70.8102390.0003140.9947
47.90.90.9112330.0004030.9947
57.80.80.9112410.0003690.9948
68.70.80.8112520.0003480.9942
78.50.80.7112470.0003370.9937
88.20.70.7112510.0002670.9941
98.30.70.8112550.0002990.9949
108.00.70.7112400.0003090.9938
x¯ 8.20.80.8112440.0003340.9944
SD0.30.10.10.380.0000440.0004
Pd45
18.60.91.0122430.0004450.9951
27.90.90.9112410.0004100.9944
36.31.01.2122630.0005440.9958
45.81.01.0122490.0005120.9944
58.10.70.7112670.0002790.9943
67.60.70.7112590.0003040.9941
77.70.70.7112520.0003320.9936
87.00.70.7102640.0003260.9930
97.90.70.8112580.0002920.9947
107.40.70.7102490.0002640.9943
x¯ 7.40.80.8112550.0003710.9944
SD0.80.10.2190.0001010.0008
Pd90
18.40.90.9122570.0004210.9948
28.00.90.9112450.0004240.9945
37.90.90.9112450.0004330.9945
48.30.90.9122420.0003930.9947
58.30.90.9112450.0004080.9944
67.70.80.9122620.0003670.9952
77.90.80.9122530.0003690.9954
87.70.80.8112600.0003640.9944
97.70.80.9122620.0003530.9954
108.00.80.9122680.0003910.9952
x¯ 8.00.80.9122540.0003920.9948
SD0.30.040.030.390.0000280.0004

Values of technological parameters

EdPdLt
0.056 J/mm20.076 J/mm20°, 45°, 90°0.1 mm
P = 21 WP=22 W
v = 2500 mm/sv = 1970 mm/s

Properties of PA 2200 powder [23]

Powder propertiesValueUnitTest Standard
Medium grain size60μm-
Density of ubound powder0.435 – 0.445g/cm3DIN 53466
Density of sintered powder0.9 – 0.95g/cm3EOS - Method
Mechanical PropertiesValueUnitTest Standard
Flexural modulus, 23°C1500MPaISO 178
Flexural strength58ISO 178
Izod impact notched, 23°C4.4kJ/m2ISO 180/1A
Izod impact unnotched, 23°C32.8ISO 180/1U
Shore D hardness (15 s)75------ISO 868
Ball indentation hardness78MPaISO 2039-1
3D DataValueUnitTest Standard
Tensile modulusX-direction700MPaISO 527-1/2
Y-direction1700
Z-direction1650
X-direction48
Tensile strengthY-direction48
Z-direction47
Strain at breakX-direction24%ISO 527-1/2
Charpy impact strength (+23°C)X-direction53kJ/m2ISO 179/1eU
Charpy notched impact strength (+23°C)X-direction4.8ISO 179/1eA
Thermal conductivityX-direction0.144W/(mK)DIN 52616
Y-direction0.144
Z-direction0.127
DOI: https://doi.org/10.2478/ama-2025-0036 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 292 - 299
Submitted on: Dec 16, 2024
Accepted on: Apr 14, 2025
Published on: Jun 30, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wiktor SZOT, Mateusz RUDNIK, Paweł SZCZYGIEŁ, Natalia KOWALSKA, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.