Have a personal or library account? Click to login
Modelling of Creep Crack Growth using Fracture Mechanics and Damage Mechanics Methods Cover

Modelling of Creep Crack Growth using Fracture Mechanics and Damage Mechanics Methods

By: Krzysztof NOWAK  
Open Access
|Jun 2025

References

  1. Riedel H. Fracture at High Temperatures. Berlin: Springer-Verlag; 1987. https://doi.org/10.1007/978-3-642-82961-1
  2. Kachanov LM. On the time of the rupture in creep conditions (Russian). Izv AN SSSR. 1958;8: 26-31.
  3. Rabotnov YuN. Creep Problems of Structural Members. Amsterdam: North-Holland; 1969.
  4. Liu Y, Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis. JSME Int J. 1998;41A: 57-65. https://doi.org/10.1299/jsmea.41.57
  5. Nishida K, Nikbin KM, Webster GA. Influence of net section damage on creep crack growth. J Strain Anal Eng. 1989;24:75-82. https://doi.org/10.1243/03093247V242075
  6. Tvergaard V. Analysis of creep crack growth by grain boundary cavitation. Int J Fract. 1986;31: 183–209. https://doi.org/10.1007/BF00018927
  7. Pandey VB, Singh V, Mishra BK, Ahmad S, Rao AV. Creep crack simulations using continuum damage mechanics and extended finite element method. Int J of Damage Mech. 2019;28: 3-34. https://doi.org/10.1177/1056789517737593
  8. Rastiello G, Giry C, Gatuingt F, Desmorat R. From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length. Comput Methods Appl Mech Engng. 2018;331: 650-674. https://doi.org/10.1016/j.cma.2017.12.006
  9. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP. Gradient-enhanced damage for quasi-brittle materials. Int J Numer Meth Engng. 1996;39: 3391–3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<;3391::AID-NME7>3.0.CO;2-D
  10. McLean M, Dyson BF. Modeling the Effects of Damage and Microstructural Evolution on the Creep Behavior of Engineering Alloys. ASME J Eng Mater Tech. 2000;122: 273–278. https://doi.org/10.1115/1.482798
  11. Hayhurst DR. CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components. Arch Mech. 2005;57: 71-100. https://am.ippt.pan.pl/index.php/am/article/view/v57p103
  12. Mustata R, Hayhurst DR. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 C–675 C. Int J Pres Ves & Piping. 2005;82: 363-372. https://doi.org/10.1016/j.ijpvp.2004.11.002
  13. Hall FR, Hayhurst DR. Modelling of Grain Size Effects in Creep Crack Growth Using a Non-Local Continuum Damage Approach. Proc. R. Soc. London A. 1991;433: 405-421. https://doi.org/10.1098/rspa.1991.0055
  14. Hayhurst DR, Dimmer PR, Morrison CJ. Development of Continuum Damage in the Creep Rupture of Notched Bars. Phil Trans R Soc Lond A. 1984;311: 103-129. https://doi.org/10.1098/rsta.1984.0021
  15. Wen JF, Tu ST, Gao XL, Reddy JN. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model. Eng Fract Mech. 2013;98: 169-184. https://doi.org/10.1016/j.engfracmech.2012.12.014
  16. Hayhurst DR, Vakili-Tahami F, Zhou JQ. Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550°C. Int J Pres Ves & Piping. 2003;80: 97-109. https://doi.org/10.1016/S0308-0161(03)00027-9
  17. Kelly DA, Morrison CJ. Creep life of AISI 316 stainless steel loaded at constant strain rate. J Strain Anal Eng. 1983; 18:189-193. https://doi.org/10.1243/03093247V183189
  18. Hall FR, Hayhurst DR, Brown PR. Prediction of Plane-Strain Creep-Crack Growth Using Continuum Damage Mechanics. Int J of Damage Mech. 1996;5: 353-383. https://doi.org/10.1177/105678959600500402
  19. Miller DA, Langdon TG. Creep fracture maps for 316 stainless steel. Metall Mater Trans A. 1979;10:1635-1641. https://doi.org/10.1007/BF02811696
  20. Petkov MP, Juan PA. Revised creep fracture maps of Type 316 stainless steel and their mechanistic perspective. Engineering Failure Analysis. 2024;159:108094. https://doi.org/10.1016/j.engfailanal.2024.108094
  21. Tan M, Celard NJC, Nikbin KM, Webster GA. Comparison of creep crack initiation and growth in four steels tested in HIDA. Int J Pres Ves & Piping. 2001;78: 737-747. http://dx.doi.org/10.1016/S0308-0161(01)00085-0
  22. Webster GA, Ainsworth RA. High temperature component life assessment. London: Chapman and Hall; 1994.
  23. Landes JD, Begley JA. A fracture mechanics approach to creep crack growth. In: Rice JR, Paris PC, editors. Mechanics of crack growth. STP590: Proc. of the 8th National Symposium on Fracture Mechanics; 1974 Aug 26-28; ASTM 1976. p. 128-148. http://dx.doi.org/10.1520/STP33943S
  24. Riedel H, Rice JR. Tensile cracks in creeping solids. In: Paris PC, editor. Fracture mechanics. STP700. West Conshohocken: ASTM; 1980. p. 112-130. http://dx.doi.org/10.1520/STP36967S
  25. Hayhurst DR, Brown PR, Morrison CJ. The Role of Continuum Damage in Creep Crack Growth. Phil Trans R Soc Lond A. 1984;311: 131-158. https://doi.org/10.1098/rsta.1984.0022
  26. Harper MP, Ellison EG. The use of the C* parameter in predicting creep crack propagation rates. J Strain Anal Eng. 1977;12: 167-179. https://doi.org/10.1243/03093247V123167
  27. Hyde TH, Sun W, Hyde CJ. Applied Creep Mechanics. New York: McGraw Hill; 2013.
  28. Saxena A. Creep and creep–fatigue crack growth. Int J Fract. 2015;191: 31–51. https://doi.org/10.1007/s10704-015-9994-4
  29. Hayhurst DR, Dimmer PR, Chernuka MW. Estimates of the creep rupture lifetime of structures using the finite element method. J Mech Phys Solids. 1975;23: 335-350. https://doi.org/10.1016/0022-5096(75)90032-0
  30. Murakami S, Hirano T, Liu Y. Asymptotic fields of stress and damage of a mode I creep crack in steady-state growth. Int J Sol Struct. 2000;37: 6203–6220. https://doi.org/10.1016/S0020-7683(99)00267-X
  31. Bodnar A, Chrzanowski M, Nowak K. Brittle failure lines in creeping plates. Int J Pres Ves & Piping. 1996;66: 253-261. https://doi.org/10.1016/0308-0161(95)00100-X
  32. Skrzypek J, Ganczarski A. Modeling of Material Damage and Failure of Structures. Berlin, Heidelberg: Springer; 1999. https://doi.org/10.1007/978-3-540-69637-7
  33. Janson J, Hult J. Fracture mechanics and damage mechanicsbined approach. J. de Mec. Appliquee. 1977;1:, a combined approach. J. de Mec. Appliquee. 1977;1: 69–84.
  34. Lemaitre J. A Course on Damage Mechanics. Berlin, Heidelberg: Springer; 1996.
  35. Hyde CJ, Hyde TH, Sun W, Becker AA. Damage mechanics based predictions of creep crack growth in 316 stainless steel. Eng Fract Mech. 2010;77: 2385-2402. https://doi.org/10.1016/j.engfracmech.2010.06.011
  36. Spindler MW. The multiaxial creep ductility of austenitic stainless steels. Fatigue Fract Engng Mater Struct. 2004;27: 273-281. https://doi.org/10.1111/j.1460-2695.2004.00732.x
  37. Oh CS, Kim NH, Kim YJ, Davies C, Nikbin K, Dean D. Creep failure simulations of 316H at 550°C: Part I – A method and validation. Eng Fract Mech. 2011;78:2966-2977. https://doi.org/10.1016/j.engfrac-mech.2011.08.015
  38. Wen JF, Tu ST. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction. Eng Fract Mech. 2014;123: 197–210. https://doi.org/10.1016/j.engfrac-mech.2014.03.001
  39. Hayhurst DR. Creep rupture under multi-axial states of stress. J Mech Phys Solids. 1972;20: 381-390. https://doi.org/10.1016/0022-5096(72)90015-4
  40. Manjoine MJ. Creep-rupture behavior of weldments. Weld J. 1982;61: S50-7.
  41. Pijaudier-Cabot G, Bazant ZP. Nonlocal damage theory. J Eng Mech. 1987;113: 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  42. Murakami S. Continuum Damage Mechanics. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-2666-6
  43. Bazant ZP, Jirasek M. Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech. 2002;128: 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
  44. Chaboche JL. Phenomenological aspects of continuum damage mechanics. In: Germain P, Piau M, Caillerie D, editors. Theoretical and Applied Mechanics. Proc. XVII Int. Cong. Theor. Appl. Mech;1988 Aug 21-27; Grenoble, France. Elsevier; 1989. p. 41–56. https://doi.org/10.1016/B978-0-444-87302-6.50011-9
  45. de Vree JHP, Brekelmans WAM, van Gils MAJ. Comparison of non-local approaches in continuum damage mechanics. Comp and Struct. 1995;55:581-8. https://doi.org/10.1016/0045-7949(94)00501-S
  46. Bazant ZP. Nonlocal Damage Theory Based on Micromechanics of Crack Interactions. J Eng Mech. 1994;120:593-617. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:3(593)
  47. Murakami S, Liu Y. Mesh-Dependence in Local Approach to Creep Fracture. Int J of Damage Mech. 1995;4:230-250. https://doi.org/10.1177/105678959500400303
  48. Nowak K. Application of a non-local grid model for analysis of the creep damage of metals. Int J of Damage Mech. 2020;29: 780–797. https://doi.org/10.1177/1056789519883668
  49. Picker C. The fracture toughness of Type 316 steel and weld metal. Report No. IWGFR–49(V.2). 1983;16:915-93.
  50. Gao W, Chen K, Guo X, Zhang L. Fracture toughness of type 316LN stainless steel welded joints. Mater Sci Eng A. 2017;685:107-114. https://doi.org/10.1016/j.msea.2016.12.128
  51. Abaqus 2021 Documentation. Dassault Systèmes Simulia Corp. 2021.
  52. Webster GA. Fracture Mechanics in the creep range. J Strain Anal Eng. 1994;29:215–223. http://journals.sagepub.com/doi/10.1243/03093247V293215
  53. Kumar M, Singh IV. Numerical investigation of creep crack growth in plastically graded materials using C(t) and XFEM. Eng Fract Mech. 2020; 226:106820. https://doi.org/10.1016/j.engfracmech.2019.106820
  54. Webster GA, Nikbin KM, Chorlton MR, Cellard NJC, Ober M. A comparison of high temperature defect assessment methods. J Mater High Temp. 1998;15:337-346. https://doi.org/10.1080/09603409.1998.11689620
  55. Garcia R, Flórez-López J, Cerrolaza M. A boundary element formulation for a class of non-local damage models. Int J Sol Struct. 1999;36:3617-3638. https://doi.org/10.1016/S0020-7683(98)00159-0
  56. Broz P. Regularization procedures for damage problems. Transactions on Modelling and Simulation. 2003;35:103-111. https://doi.org/10.2495/BE030111
  57. Simone A, Wells GN, Sluys LJ. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Engng. 2003;192:4581-4607. https://doi.org/10.1016/S0045-7825(03)00428-6
  58. De-Pouplana I, Onate E. Combination of a non-local damage model for quasi-brittle materials with a mesh-adaptive finite element technique. Finite Elements in Analysis and Design. 2016;112:26-39. https://doi.org/10.1016/j.finel.2015.12.011
  59. Duddu R, Waisman H. A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput Mech. 2013;51:961–974. https://doi.org/10.1007/s00466-012-0778-7
DOI: https://doi.org/10.2478/ama-2025-0034 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 279 - 287
Submitted on: Jul 16, 2024
Accepted on: Mar 23, 2025
Published on: Jun 26, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Krzysztof NOWAK, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.