References
- Riedel H. Fracture at High Temperatures. Berlin: Springer-Verlag; 1987. https://doi.org/10.1007/978-3-642-82961-1
- Kachanov LM. On the time of the rupture in creep conditions (Russian). Izv AN SSSR. 1958;8: 26-31.
- Rabotnov YuN. Creep Problems of Structural Members. Amsterdam: North-Holland; 1969.
- Liu Y, Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis. JSME Int J. 1998;41A: 57-65. https://doi.org/10.1299/jsmea.41.57
- Nishida K, Nikbin KM, Webster GA. Influence of net section damage on creep crack growth. J Strain Anal Eng. 1989;24:75-82. https://doi.org/10.1243/03093247V242075
- Tvergaard V. Analysis of creep crack growth by grain boundary cavitation. Int J Fract. 1986;31: 183–209. https://doi.org/10.1007/BF00018927
- Pandey VB, Singh V, Mishra BK, Ahmad S, Rao AV. Creep crack simulations using continuum damage mechanics and extended finite element method. Int J of Damage Mech. 2019;28: 3-34. https://doi.org/10.1177/1056789517737593
- Rastiello G, Giry C, Gatuingt F, Desmorat R. From diffuse damage to strain localization from an Eikonal Non-Local (ENL) Continuum Damage model with evolving internal length. Comput Methods Appl Mech Engng. 2018;331: 650-674. https://doi.org/10.1016/j.cma.2017.12.006
- Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP. Gradient-enhanced damage for quasi-brittle materials. Int J Numer Meth Engng. 1996;39: 3391–3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<;3391::AID-NME7>3.0.CO;2-D
- McLean M, Dyson BF. Modeling the Effects of Damage and Microstructural Evolution on the Creep Behavior of Engineering Alloys. ASME J Eng Mater Tech. 2000;122: 273–278. https://doi.org/10.1115/1.482798
- Hayhurst DR. CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components. Arch Mech. 2005;57: 71-100. https://am.ippt.pan.pl/index.php/am/article/view/v57p103
- Mustata R, Hayhurst DR. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 C–675 C. Int J Pres Ves & Piping. 2005;82: 363-372. https://doi.org/10.1016/j.ijpvp.2004.11.002
- Hall FR, Hayhurst DR. Modelling of Grain Size Effects in Creep Crack Growth Using a Non-Local Continuum Damage Approach. Proc. R. Soc. London A. 1991;433: 405-421. https://doi.org/10.1098/rspa.1991.0055
- Hayhurst DR, Dimmer PR, Morrison CJ. Development of Continuum Damage in the Creep Rupture of Notched Bars. Phil Trans R Soc Lond A. 1984;311: 103-129. https://doi.org/10.1098/rsta.1984.0021
- Wen JF, Tu ST, Gao XL, Reddy JN. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model. Eng Fract Mech. 2013;98: 169-184. https://doi.org/10.1016/j.engfracmech.2012.12.014
- Hayhurst DR, Vakili-Tahami F, Zhou JQ. Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550°C. Int J Pres Ves & Piping. 2003;80: 97-109. https://doi.org/10.1016/S0308-0161(03)00027-9
- Kelly DA, Morrison CJ. Creep life of AISI 316 stainless steel loaded at constant strain rate. J Strain Anal Eng. 1983; 18:189-193. https://doi.org/10.1243/03093247V183189
- Hall FR, Hayhurst DR, Brown PR. Prediction of Plane-Strain Creep-Crack Growth Using Continuum Damage Mechanics. Int J of Damage Mech. 1996;5: 353-383. https://doi.org/10.1177/105678959600500402
- Miller DA, Langdon TG. Creep fracture maps for 316 stainless steel. Metall Mater Trans A. 1979;10:1635-1641. https://doi.org/10.1007/BF02811696
- Petkov MP, Juan PA. Revised creep fracture maps of Type 316 stainless steel and their mechanistic perspective. Engineering Failure Analysis. 2024;159:108094. https://doi.org/10.1016/j.engfailanal.2024.108094
- Tan M, Celard NJC, Nikbin KM, Webster GA. Comparison of creep crack initiation and growth in four steels tested in HIDA. Int J Pres Ves & Piping. 2001;78: 737-747. http://dx.doi.org/10.1016/S0308-0161(01)00085-0
- Webster GA, Ainsworth RA. High temperature component life assessment. London: Chapman and Hall; 1994.
- Landes JD, Begley JA. A fracture mechanics approach to creep crack growth. In: Rice JR, Paris PC, editors. Mechanics of crack growth. STP590: Proc. of the 8th National Symposium on Fracture Mechanics; 1974 Aug 26-28; ASTM 1976. p. 128-148. http://dx.doi.org/10.1520/STP33943S
- Riedel H, Rice JR. Tensile cracks in creeping solids. In: Paris PC, editor. Fracture mechanics. STP700. West Conshohocken: ASTM; 1980. p. 112-130. http://dx.doi.org/10.1520/STP36967S
- Hayhurst DR, Brown PR, Morrison CJ. The Role of Continuum Damage in Creep Crack Growth. Phil Trans R Soc Lond A. 1984;311: 131-158. https://doi.org/10.1098/rsta.1984.0022
- Harper MP, Ellison EG. The use of the C* parameter in predicting creep crack propagation rates. J Strain Anal Eng. 1977;12: 167-179. https://doi.org/10.1243/03093247V123167
- Hyde TH, Sun W, Hyde CJ. Applied Creep Mechanics. New York: McGraw Hill; 2013.
- Saxena A. Creep and creep–fatigue crack growth. Int J Fract. 2015;191: 31–51. https://doi.org/10.1007/s10704-015-9994-4
- Hayhurst DR, Dimmer PR, Chernuka MW. Estimates of the creep rupture lifetime of structures using the finite element method. J Mech Phys Solids. 1975;23: 335-350. https://doi.org/10.1016/0022-5096(75)90032-0
- Murakami S, Hirano T, Liu Y. Asymptotic fields of stress and damage of a mode I creep crack in steady-state growth. Int J Sol Struct. 2000;37: 6203–6220. https://doi.org/10.1016/S0020-7683(99)00267-X
- Bodnar A, Chrzanowski M, Nowak K. Brittle failure lines in creeping plates. Int J Pres Ves & Piping. 1996;66: 253-261. https://doi.org/10.1016/0308-0161(95)00100-X
- Skrzypek J, Ganczarski A. Modeling of Material Damage and Failure of Structures. Berlin, Heidelberg: Springer; 1999. https://doi.org/10.1007/978-3-540-69637-7
- Janson J, Hult J. Fracture mechanics and damage mechanicsbined approach. J. de Mec. Appliquee. 1977;1:, a combined approach. J. de Mec. Appliquee. 1977;1: 69–84.
- Lemaitre J. A Course on Damage Mechanics. Berlin, Heidelberg: Springer; 1996.
- Hyde CJ, Hyde TH, Sun W, Becker AA. Damage mechanics based predictions of creep crack growth in 316 stainless steel. Eng Fract Mech. 2010;77: 2385-2402. https://doi.org/10.1016/j.engfracmech.2010.06.011
- Spindler MW. The multiaxial creep ductility of austenitic stainless steels. Fatigue Fract Engng Mater Struct. 2004;27: 273-281. https://doi.org/10.1111/j.1460-2695.2004.00732.x
- Oh CS, Kim NH, Kim YJ, Davies C, Nikbin K, Dean D. Creep failure simulations of 316H at 550°C: Part I – A method and validation. Eng Fract Mech. 2011;78:2966-2977. https://doi.org/10.1016/j.engfrac-mech.2011.08.015
- Wen JF, Tu ST. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction. Eng Fract Mech. 2014;123: 197–210. https://doi.org/10.1016/j.engfrac-mech.2014.03.001
- Hayhurst DR. Creep rupture under multi-axial states of stress. J Mech Phys Solids. 1972;20: 381-390. https://doi.org/10.1016/0022-5096(72)90015-4
- Manjoine MJ. Creep-rupture behavior of weldments. Weld J. 1982;61: S50-7.
- Pijaudier-Cabot G, Bazant ZP. Nonlocal damage theory. J Eng Mech. 1987;113: 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Murakami S. Continuum Damage Mechanics. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-2666-6
- Bazant ZP, Jirasek M. Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech. 2002;128: 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
- Chaboche JL. Phenomenological aspects of continuum damage mechanics. In: Germain P, Piau M, Caillerie D, editors. Theoretical and Applied Mechanics. Proc. XVII Int. Cong. Theor. Appl. Mech;1988 Aug 21-27; Grenoble, France. Elsevier; 1989. p. 41–56. https://doi.org/10.1016/B978-0-444-87302-6.50011-9
- de Vree JHP, Brekelmans WAM, van Gils MAJ. Comparison of non-local approaches in continuum damage mechanics. Comp and Struct. 1995;55:581-8. https://doi.org/10.1016/0045-7949(94)00501-S
- Bazant ZP. Nonlocal Damage Theory Based on Micromechanics of Crack Interactions. J Eng Mech. 1994;120:593-617. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:3(593)
- Murakami S, Liu Y. Mesh-Dependence in Local Approach to Creep Fracture. Int J of Damage Mech. 1995;4:230-250. https://doi.org/10.1177/105678959500400303
- Nowak K. Application of a non-local grid model for analysis of the creep damage of metals. Int J of Damage Mech. 2020;29: 780–797. https://doi.org/10.1177/1056789519883668
- Picker C. The fracture toughness of Type 316 steel and weld metal. Report No. IWGFR–49(V.2). 1983;16:915-93.
- Gao W, Chen K, Guo X, Zhang L. Fracture toughness of type 316LN stainless steel welded joints. Mater Sci Eng A. 2017;685:107-114. https://doi.org/10.1016/j.msea.2016.12.128
- Abaqus 2021 Documentation. Dassault Systèmes Simulia Corp. 2021.
- Webster GA. Fracture Mechanics in the creep range. J Strain Anal Eng. 1994;29:215–223. http://journals.sagepub.com/doi/10.1243/03093247V293215
- Kumar M, Singh IV. Numerical investigation of creep crack growth in plastically graded materials using C(t) and XFEM. Eng Fract Mech. 2020; 226:106820. https://doi.org/10.1016/j.engfracmech.2019.106820
- Webster GA, Nikbin KM, Chorlton MR, Cellard NJC, Ober M. A comparison of high temperature defect assessment methods. J Mater High Temp. 1998;15:337-346. https://doi.org/10.1080/09603409.1998.11689620
- Garcia R, Flórez-López J, Cerrolaza M. A boundary element formulation for a class of non-local damage models. Int J Sol Struct. 1999;36:3617-3638. https://doi.org/10.1016/S0020-7683(98)00159-0
- Broz P. Regularization procedures for damage problems. Transactions on Modelling and Simulation. 2003;35:103-111. https://doi.org/10.2495/BE030111
- Simone A, Wells GN, Sluys LJ. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Engng. 2003;192:4581-4607. https://doi.org/10.1016/S0045-7825(03)00428-6
- De-Pouplana I, Onate E. Combination of a non-local damage model for quasi-brittle materials with a mesh-adaptive finite element technique. Finite Elements in Analysis and Design. 2016;112:26-39. https://doi.org/10.1016/j.finel.2015.12.011
- Duddu R, Waisman H. A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput Mech. 2013;51:961–974. https://doi.org/10.1007/s00466-012-0778-7