Have a personal or library account? Click to login
The Elzaki Transform Method for Addressing Cauchy Problems in Higher Order Nonlinear PDEs Cover

The Elzaki Transform Method for Addressing Cauchy Problems in Higher Order Nonlinear PDEs

Open Access
|Jun 2025

References

  1. Wu GC. Laplace transform Overcoming Principle Drawbacks in Application of the Variational Iteration Method to Fractional Heat Equations. Thermal Science. 2012;16(4):1257-1261. https://doi.org/10.2298/TSCI1204257W
  2. Elzaki MT. Application of Projected Differential Transform Method on Nonlinear Partial Differential Equations with Proportional Delay in One Variable, World Applied Sciences Journal. 2014;30(3):345-349. 10.5829/idosi.wasj.2014.30.03.1841
  3. Elzaki MT, Biazar J. Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations, World Applied Sciences Journal. 2013;24(4):944-948. 10.5829/idosi.wasj.2013.24.07.1041
  4. Elzaki MT, Elzaki MS, Elsayed A. Elnour. On the New Integral Transform “ELzaki Transform” Fundamental Properties Investigations and Applications, Global Journal of Mathematical Sciences: Theory and Practical. 2012;4(1):1-13. ISSN 0974-3200.
  5. Elzaki MT, Elzaki MS. On the Connections Between Laplace and El-zaki Transforms, Advances in Theoretical and Applied Mathematics. 2011;6(1):1-10. ISSN 0973-4554.
  6. Elzaki MT, Hilal EMA. Solution of Telegraph Equation by Modified of Double Sumudu Transform "Elzaki Transform". Mathematical Theory and Modeling. 2012;2(4):95-103. ISSN 2224-5804.
  7. Elzaki MT. Double Laplace Variational Iteration Method for Solution of Nonlinear Convolution Partial Differential Equations. Archives Des Sciences. 2012;65(12):588-593.
  8. Ahmed SA, Elzaki MT, Mohamed. A. Solving Partial Differential Equations of Fractional Order by Using a Novel Double Integral Transform. Mathematical Problems in Engineering. ID 9971083, 2023;12 pages. https://doi.org/10.1155/2023/9971083
  9. Elzaki MT, Chamekh M, Ahmed SA. Convergence and application of a modified double Laplace transform (MDLT) in some equations of mathematical physics. Advances in Differential Equations and Control Processes. 2023;30(2):151-168. http://dx.doi.org/10.17654/0974324323010
  10. Biazar J, Eslami M. A new technique for non-linear two-dimensional wave equations. Scientia Iranica. Transactions B: Mechanical Engineering. 2013;20(2):359–363. https://doi.org/10.1016/j.scient.2013.02.012
  11. Elzaki MT, Ishag AA. Modified Laplace Transform and Ordinary Differential Equations with Variable Coefficients. World Engineering & Applied Sciences Journal. 2019;10(3):79-84. 10.5829/idosi.weasj.2019.79.84
  12. He JH. A coupling method of homotopy technique and perturbation technique for nonlinear problems. International Journal of Non-Linear Mechanics. 2000;35(1):37–43. https://doi.org/10.1016/S0020-7462(98)00085-7
  13. Mohamed M, Amjad H, Elzaki MT, Mohamed A, Shiraz. E. Solution of Fractional Heat-Like and Fractional Wave-Like Equation by Using Modern Strategy. Acta Mechanica et Automatica. 2023;17(3):372-380. https://doi.org/10.2478/ama-2023-0042
  14. Elzaki MT, Chamekh M, Ahmed SA. Modified integral transform for solving benney-luke and singular pseudo-hyperbolic equations. Acta Mechanica et Automatica. 2024;18(1). https://doi.org/10.2478/ama-2024-0018
  15. Chamekh M, Latrach MA, Elzaki MT. Approximate analytical solutions for some obstacle problems. Journal of King Saud University – Science. 2021;33(2). https://doi.org/10.1016/j.jksus.2020.101259
  16. Chamekh M, Latrach MA, Abed Y. Multi-step Adomian decomposition method for solving a delayed Chikungunya virus system. Journal of Mathematics and Computer Science. 2025;37(4):361—372. https://doi.org/10.22436/jmcs.037.04.01
  17. Chamekh M, Latrach MA, Jday F. Multi-step semi-analytical solutions for a chikungunya virus system. J.Umm Al-Qura Univ. Appll. Sci. 2023;9:123–131. https://doi.org/10.1007/s43994-023-00027-8
  18. Abdulazeez TS, Modanli M, Muhamad Husien A. Numerical scheme methods for solving nonlinear pseudo hyperbolic partial differential equations. Journal of Applied Mathematics and Computational Mechanics. 2022;21(4):5-15. https://doi.org/10.17512/jamcm.2022.4.01
  19. Abdulazeez TS, Modanli M, Husien MA. Solutions to nonlinear pseudo hyperbolic partial differential equations with nonlocal conditions by using residual power series method. Sigma J. Eng. Nat. Sci. 2023;41(3):488-492. https://doi.org/10.14744/sigma.2023.00055
  20. Abdulazeez TS, Modanli M. Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method. Alexandria Engineering Journal. 2022;61. https://doi.org/10.1016/j.aej.2022.06.027
  21. Modanli M, Karadag K, Abdulazeez TS. Solutions of the mobile–immobile advection–dispersion model based on the fractional operators using the Crank–Nicholson difference scheme. Chaos, Solitons & Fractals. 2023;167. ISSN0960-0779. https://doi.org/10.1016/j.chaos.2023.113114
  22. Abdulla SO, Abdulazeez TS, Modanli M. Comparison of third-order fractional partial differential equation based on the fractional operators using the explicit finite difference method. Alexandria Engineering Journal. 2023;70: 37-44. ISSN 1110-0168. https://doi.org/10.1016/j.aej.2023.02.032
  23. Ahsana M, Hussainb I, Ahmad M. A finite-difference and Haar wavelets hybrid collocation technique for non-linear inverse Cauchy problems. Applied Mathematics in Science and Engineering. 2022;30(1):121–140. https://doi.org/10.1080/17415977.2022.2026350
  24. Tenekeci ME, Abdulazeez ST, Karadağ K, Modanli M. Edge detection using the Prewitt operator with fractional order telegraph partial differential equations (PreFOTPDE). Multimed Tools Appl. 2024.
  25. https://doi.org/10.1007/s11042-024-19440-0
  26. Modanli M, Sadiq Murad MA, Abdulazeez ST. A new computational method-based integral transform for solving time-fractional equation arises in electromagnetic waves. Zeitschrift für angewandte Mathe-matik und Physik. 2023;74(5). https://doi.org/10.1007/s00033-023-02076-9
  27. Bougoffa L. The Cauchy problem for nonlinear hyperbolic equations of higher order using modified decomposition method. Journal of Mathematical Control Science and Applications (JMCSA). 2017;1(1):1–9.
  28. Aslanov A. Homotopy perturbation method for solving wave-like nonlinear equations with initial-boundary conditions. Discrete Dynamics in Nature and Society. 2011; 10 pages. ID 534165. https://doi.org/10.1155/2011/534165
  29. Aslanov A. A homotopy-analysis approach for nonlinear wave-like equations with variable coefficients. In Abstract and Applied Analysis. Hindawi; 2015. http://dx.doi.org/10.1155/2015/628310
  30. Elzaki MT, Chamekh M, Ahmed SA. Modified Integral Transform for Solving Benney-Luke and Singular Pseudo-Hyperbolic Equations. Acta Mechanica et Automatica. 2024:18(1). http://dx.doi.org/10.2478/ama-2024-0018
  31. Ahmed SA, Saade R, Qazza A, Elzaki MT. Applying Conformable Double Sumudu – Elzaki Approach to Solve Nonlinear Fractional Problems. Progr. Fract. Differ. Appl. 2024;10(2);271-286. http://dx.doi.org/10.18576/pfda/100208
  32. Elzaki MT, Mohamed MZ. A novel analytical method for the exact solution of the fractional-order biological population model. Acta Mechan-ica et Automatica. 2024;18(3);564-570. http://dx.doi.org/10.2478/ama-2024-0059
  33. Chamekh M, Latrach MA, Elzaki MT. Novel integral transform treating some Ψ-fractional derivative equations. Acta Mechanica et Automatica. 2024;18(3). https://doi.org/10.2478/ama-2024-0060
  34. Elzaki MT, Ahmed SA. Novel approach for solving fractional partial differential equations using conformable Elzaki Transform. J.Umm Al-Qura Univ. Appll. Sci. 2024. https://doi.org/10.1007/s43994-024-00188-0
DOI: https://doi.org/10.2478/ama-2025-0028 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 225 - 231
Submitted on: Dec 7, 2024
Accepted on: Mar 3, 2025
Published on: Jun 6, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tarig M. ELZAKI, Mohamed Ali LATRACH, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.