References
- Hirota R. The direct method in soliton theory. Cambridge University Press. 2004 (155).
- Ismael HF, Sulaiman TA, Younas U, Nabi HR. On the autonomous multiple wave solutions and hybrid phenomena to a (3+ 1)-dimensional Boussinesq-type equation in fluid mediums. Chaos Solitons Fractals. 2024;187:115374.
- Wazwaz A-M. The simplified Hirota’s method for studying three extended higher-order KdV-type equations. Journal of Ocean Engineering and Science. 2016;1:181–5.
- Ismael HF, Bulut H. Nonlinear dynamics of (2+ 1)‐dimensional Bo-goyavlenskii–Schieff equation arising in plasma physics. Math Methods Appl Sci 2021.
- Zhao Z. Bäcklund transformations, rational solutions and soliton– cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation. Appl Math Lett. 2019;89:103–10.
- Hirota R. Soliton solutions to the BKP equations. I. The Pfaffian technique. J Physical Soc Japan 1989;58:2285–96.
- Murad MAS, Ismael HF, Sulaiman TA. Resonant optical soliton solutions for time-fractional nonlinear Schrödinger equation in optical fibers. Journal of Nonlinear Optical Physics & Materials. 2024:2450024.
- Peng W-Q, Tian S-F, Wang X-B, Zhang T-T, Fang Y. Riemann–Hilbert method and multi-soliton solutions for three-component coupled non-linear Schrödinger equations. Journal of Geometry and Physics. 2019;146:103508.
- Zhang Y, Cheng Y, He J. Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation. Journal of Nonlinear Mathematical Physics. 2017;24:210–23.
- Murad MAS, Ismael HF, Sulaiman TA. Various exact solutions to the time-fractional nonlinear Schrödinger equation via the new modified Sardar sub-equation method. Phys Scr. 2024;99:085252.
- Peng W-Q, Chen Y. N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm. Physica D. 2022;435:133274.
- Abdel-Gawad HI, Sulaiman TA, Ismael HF. Bright–dark envelope-optical solitons in space-time reverse generalized Fokas–Lenells equation: Modulated wave gain. Modern Physics Letters B. 2025;39:2450377.
- Fan L, Bao T. The integrability and infinite conservation laws of a variable coefficient higher-order Schrödinger equation. Chinese Journal of Physics 2024.
- Younas U, Muhammad J, Ismael HF, Murad MAS, Sulaiman TA. Optical fractional solitonic structures to decoupled nonlinear Schrödinger equation arising in dual-core optical fibers. Modern Physics Letters B. 2025;39:2450378.
- Zhao X-H, Li S. Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers. Appl Math Lett. 2022;132:108159.
- Kaya D, El-Sayed SM. On a generalized fifth order KdV equations. Phys Lett A. 2003;310:44–51.
- Butler S, Joshi N. An inverse scattering transform for the lattice potential KdV equation. Inverse Probl. 2010;26:115012.
- Alharbi AR, Almatrafi MB. Exact solitary wave and numerical solutions for geophysical KdV equation. Journal of King Saud University-Science. 2022;34:102087.
- Zhang D-J, Zhao S-L, Sun Y-Y, Zhou J. Solutions to the modified Korteweg–de Vries equation. Reviews in Mathematical Physics. 2014;26:1430006.
- Salas AH, Gómez S CA. Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math Probl Eng. 2010.
- Ramirez J, Bruzón MS, Muriel C, Gandarias ML. The Schwarzian Korteweg–de Vries equation in (2+ 1) dimensions. J Phys A Math Gen. 2003;36:1467.
- Lü X, Chen S-J. N-soliton solutions and associated integrability for a novel (2+ 1)-dimensional generalized KdV equation. Chaos Solitons Fractals. 2023;169:113291.
- Ismaeel SME, Wazwaz A-M, El-Tantawy SA. New (3+ 1)-dimensional integrable generalized KdV equation: Painleve property, multiple soli-ton/shock solutions, and a class of lump solutions. Rom Rep Phys. 2024;76:102.
- Novikov S, Manakov S V, Pitaevskii LP, Zakharov VE. Theory of solitons: the inverse scattering method. Springer Science & Business Media. 1984.
- Satsuma J, Ablowitz MJ. Two‐dimensional lumps in nonlinear dispersive systems. J Math Phys. 1979;20:1496–503.