Have a personal or library account? Click to login
Generalized KdV Equation: Novel Nature Oceanic, M-lump and Physical Collision Waves Cover

Generalized KdV Equation: Novel Nature Oceanic, M-lump and Physical Collision Waves

Open Access
|Jun 2025

References

  1. Hirota R. The direct method in soliton theory. Cambridge University Press. 2004 (155).
  2. Ismael HF, Sulaiman TA, Younas U, Nabi HR. On the autonomous multiple wave solutions and hybrid phenomena to a (3+ 1)-dimensional Boussinesq-type equation in fluid mediums. Chaos Solitons Fractals. 2024;187:115374.
  3. Wazwaz A-M. The simplified Hirota’s method for studying three extended higher-order KdV-type equations. Journal of Ocean Engineering and Science. 2016;1:181–5.
  4. Ismael HF, Bulut H. Nonlinear dynamics of (2+ 1)‐dimensional Bo-goyavlenskii–Schieff equation arising in plasma physics. Math Methods Appl Sci 2021.
  5. Zhao Z. Bäcklund transformations, rational solutions and soliton– cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation. Appl Math Lett. 2019;89:103–10.
  6. Hirota R. Soliton solutions to the BKP equations. I. The Pfaffian technique. J Physical Soc Japan 1989;58:2285–96.
  7. Murad MAS, Ismael HF, Sulaiman TA. Resonant optical soliton solutions for time-fractional nonlinear Schrödinger equation in optical fibers. Journal of Nonlinear Optical Physics & Materials. 2024:2450024.
  8. Peng W-Q, Tian S-F, Wang X-B, Zhang T-T, Fang Y. Riemann–Hilbert method and multi-soliton solutions for three-component coupled non-linear Schrödinger equations. Journal of Geometry and Physics. 2019;146:103508.
  9. Zhang Y, Cheng Y, He J. Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation. Journal of Nonlinear Mathematical Physics. 2017;24:210–23.
  10. Murad MAS, Ismael HF, Sulaiman TA. Various exact solutions to the time-fractional nonlinear Schrödinger equation via the new modified Sardar sub-equation method. Phys Scr. 2024;99:085252.
  11. Peng W-Q, Chen Y. N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm. Physica D. 2022;435:133274.
  12. Abdel-Gawad HI, Sulaiman TA, Ismael HF. Bright–dark envelope-optical solitons in space-time reverse generalized Fokas–Lenells equation: Modulated wave gain. Modern Physics Letters B. 2025;39:2450377.
  13. Fan L, Bao T. The integrability and infinite conservation laws of a variable coefficient higher-order Schrödinger equation. Chinese Journal of Physics 2024.
  14. Younas U, Muhammad J, Ismael HF, Murad MAS, Sulaiman TA. Optical fractional solitonic structures to decoupled nonlinear Schrödinger equation arising in dual-core optical fibers. Modern Physics Letters B. 2025;39:2450378.
  15. Zhao X-H, Li S. Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers. Appl Math Lett. 2022;132:108159.
  16. Kaya D, El-Sayed SM. On a generalized fifth order KdV equations. Phys Lett A. 2003;310:44–51.
  17. Butler S, Joshi N. An inverse scattering transform for the lattice potential KdV equation. Inverse Probl. 2010;26:115012.
  18. Alharbi AR, Almatrafi MB. Exact solitary wave and numerical solutions for geophysical KdV equation. Journal of King Saud University-Science. 2022;34:102087.
  19. Zhang D-J, Zhao S-L, Sun Y-Y, Zhou J. Solutions to the modified Korteweg–de Vries equation. Reviews in Mathematical Physics. 2014;26:1430006.
  20. Salas AH, Gómez S CA. Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math Probl Eng. 2010.
  21. Ramirez J, Bruzón MS, Muriel C, Gandarias ML. The Schwarzian Korteweg–de Vries equation in (2+ 1) dimensions. J Phys A Math Gen. 2003;36:1467.
  22. Lü X, Chen S-J. N-soliton solutions and associated integrability for a novel (2+ 1)-dimensional generalized KdV equation. Chaos Solitons Fractals. 2023;169:113291.
  23. Ismaeel SME, Wazwaz A-M, El-Tantawy SA. New (3+ 1)-dimensional integrable generalized KdV equation: Painleve property, multiple soli-ton/shock solutions, and a class of lump solutions. Rom Rep Phys. 2024;76:102.
  24. Novikov S, Manakov S V, Pitaevskii LP, Zakharov VE. Theory of solitons: the inverse scattering method. Springer Science & Business Media. 1984.
  25. Satsuma J, Ablowitz MJ. Two‐dimensional lumps in nonlinear dispersive systems. J Math Phys. 1979;20:1496–503.
DOI: https://doi.org/10.2478/ama-2025-0026 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 217 - 223
Submitted on: Nov 30, 2024
|
Accepted on: Feb 10, 2025
|
Published on: Jun 6, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hajar Farhan ISMAEL, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.