Have a personal or library account? Click to login
Fractional Discrete-Time Compartmental Linear Systems Cover

Fractional Discrete-Time Compartmental Linear Systems

Open Access
|Jun 2025

References

  1. Abu-Saris R, Al-Mdallal Q. On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 2013; 16: 613-629.
  2. Busłowicz M. Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bull. Pol. Acad. Sci. Tech. 2012; 60(2): 279-284.
  3. Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. J. Wiley & Sons. New York; 2000.
  4. Goodrich C, Peterson A. Discrete Fractional Calculus. Springer. Cham; 2015.
  5. Haddad WM, Chellaboina VS, Hui Q. Nonnegative and compartmental dynamical systems. Princeton University Press, Oxford; 2010.
  6. Kaczorek T. Positive 1D and 2D Systems. Springer Verlag, London; 2002.
  7. Kaczorek T. Positivity and reachability of fractional electrical circuits. Acta Mechanica et Automatica. 2011; 5(2): 42-51.
  8. Kaczorek T. Selected Problems of Fractional Systems Theory. Berlin, Germany: Springer-Verlag; 2011.
  9. Kaczorek T. Fractional time-invariant compartmental linear systems. Int. J. Appl. Math. Comput. Sci. 2023; 33(1): 97–102.
  10. Kaczorek T, Rogowski K. Fractional Linear Systems and Electrical Circuits. Studies in Systems. Decision and Control. Springer. 2015; 13.
  11. Mozyrska D, Wyrwas M. The Z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 2015;(2-3): 1-12.
  12. Oldham K, Spanier J. The fractional calculus: integrations and differentiations of arbitrary order. New York USA. Academic Press 1974.
  13. Ostalczyk P. Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing. Hackensack New York; 2016.
  14. Podlubny I. Fractional differential equations. San Diego. USA: Academic Press; 1999.
  15. Ruszewski A. Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences. 2019; 29(3): 549-567.
  16. Sabatier J, Agrawal OP, Machado JAT. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer. London; 2007.
  17. Sajewski Ł. Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Techn. 2017; 65(5): 709-714.
  18. Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018; 64: 213-231.
  19. Wu GC, Abdeljawad T, Liu J, Baleanu D, Wu KT. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Analysis: Model. Contr. 2019;24:919-936.
DOI: https://doi.org/10.2478/ama-2025-0025 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 212 - 216
Submitted on: Jan 27, 2025
Accepted on: Mar 5, 2025
Published on: Jun 6, 2025
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tadeusz Kaczorek, Andrzej Ruszewski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.