References
- Asakura K, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakano M, Omae K. Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. J Occup Health. 2009 Nov; 51(6):498-512. https://doi.org/10.1539/JOH.L9080
- Attallah NGM, Elekhnawy E, Negm WA, Hussein IA, Mokhtar FA, Al-Fakhrany OM. In vivo and in vitro antimicrobial activity of biogenic silver nanoparticles against Staphylococcus aureus clinical isolates. Pharmaceuticals. 2022 Feb; 15(2):194. https://doi.org/10.3390/PH15020194/S1
- Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, et al. The response of Pseudomonas aeruginosa PAO1 to UV-activated titanium dioxide/silica nanotubes. Int J Mol Sci. 2020 Oct; 21(20):7748. https://doi.org/10.3390/ijms21207748
- Augustyniak A, Cendrowski K, Nawrotek P, Barylak M, Mijowska E. Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water Air Soil Pollut. 2016 Apr; 227:230, 1-13. https://doi.org/10.1007/s11270-016-2922-z
- Augustyniak A, Dubrowska K, Jabłońska J, Cendrowski K, Wróbel RJ, Piz M, et al. Basic physiology of Pseudomonas aeruginosa contacted with carbon nanocomposites. Appl Nanosci (Switzerland). 2022 Jun; 12(6):1917-1927. https://doi.org/10.1007/S13204-022-02460-3/FIGURES/5
- Augustyniak A, Sikora P, Grygorcewicz B, Despot D, Braun B, Rakoczy R, et al. Biofilms in the gravity sewer interfaces: making a friend from a foe. Rev Environ Sci Biotechnol. 2021 Sep; 20(3):795-813. https://doi.org/10.1007/s11157-021-09582-0
- Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol Lett. 2012 Mar; 208(3):286-292. https://doi.org/10.1016/j. toxlet.2011.11.002
- Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol. 2017 Jun; 15(6):338. https://doi.org/10.1038/NRMICRO.2017.15
- Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, Yu H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016 Aug; 50(16):8840-8848. https://doi.org/10.1021/ACS.EST.6B00998
- Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol. 2016 Sep; 14(9):563-575. https://doi.org/10.1038/nrmicro.2016.94
- Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of microbial products in cosmetic industry. Nat Prod Bioprospect. 2019 Oct; 9(4):267. https://doi.org/10.1007/S13659-019-0215-0
- Honselmann genannt Humme J, Dubrowska K, Grygorcewicz B, Gliźniewicz M, Paszkiewicz O, Głowacka A, et al. Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles. Microb Cell Fact. 2024 Jan; 23(1):1-15. https://doi.org/10.1186/S12934-024-02486-Y
- Honselmann genannt Humme J, Dubrowska K, Perużyńska M, Droździk M, Birger R, Jurkiewicz M, et al. Multi-walled carbon nanotubes as reusable boosters of pyocyanin production for anticancer research. Appl Microbiol Biotechnol. 2025 Jan; 109(1):1-16. https://doi.org/10.1007/S00253-025-13543-W
- Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, et al. Nanomaterials regulate bacterial quorum sensing: applications, mechanisms, and optimization strategies. Adv Sci. 2024 Aug; 11(15):2306070. https://doi.org/10.1002/ADVS.202306070
- Huang W, Zhang Y, Li Z, Li M, Li F, Mortimer M, Guo LH. Silver and hyaluronic acid-coated gold nanoparticles modulate the metabolism of a model human gut bacterium Lactobacillus casei. Nanomaterials. 2022 Oct; 12(19):3377. https://doi.org/10.3390/NANO12193377
- Jabłońska J, Augustyniak A, Dubrowska K, Rakoczy R. The two faces of pyocyanin - why and how to steer its production? World J Microbiol Biotechnol. 2023 Apr; 39(4):1-13. https://doi.org/10.1007/S11274-023-03548-W
- Jabłońska J, Dubrowska K, Augustyniak A, Wróbel RJ, Piz M, Cendrowski K, Rakoczy R. The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa. Appl Nanosci (Switzerland). 2022 Jun; 12(6):1929-1940. https://doi.org/10.1007/S13204-022-02461-2
- Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, et al. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicol Environ Saf. 2021 Jul; 222:112459. https://doi.org/10.1016/J.ECOENV.2021.112459
- Khurana C, Sharma P, Pandey OP, Chudasama B. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes. J Mater Sci Technol. 2016 Nov; 32(6):524-532. https://doi.org/10.1016/J.JMST.2016.02.004
- Krysiak-Smułek K, Smułek W, Przybylska D, Hnatejko Z, Kaczorek E, Grzyb T. Assessing the effects of luminescently labelled and non-labelled PET nanoparticles on environmental bacteria. Chemosphere. 2025 Mar; 387:144648. https://doi.org/10.1016/J.CHEMOSPHERE.2025.144648
- Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol. 2018 Sep; 34(9):1-12. https://doi.org/10.1007/S11274-018-2523-7
- Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013 Jun; 11(6):371-384. https://doi.org/10.1038/nrmi-cro3028
- Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, et al. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - microbial diversity and metabolomics analyses. Ecotoxicol Environ Saf. 2021 May; 212:112016. https://doi.org/10.1016/J.ECOENV.2021.112016
- Lin T, Ding W, Sun L, Wang L, Liu CG, Song H. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy. 2018 Jul; 50:639-648. https://doi.org/10.1016/J.NAN0EN.2018.05.072
- Metryka O, Wasilkowski D, Adamczyk-Habrajska M, Mrozik A. Undesirable consequences of the metallic nanoparticles action on the properties and functioning of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis membranes. J Hazard Mater. 2023 Mar; 446:130728. https://doi.org/10.1016/J.JHAZMAT.2023.130728
- Mondal S, Chakraborty S, Manna S, Mandal SM. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharmaceutics. 2024 Jun; 1(3):388-402. https://doi.org/10.1039/D4P-M00032C
- Mortimer M, Devarajan N, Li D, Holden PA. Multiwall carbon nanotubes induce more pronounced transcriptomic responses in Pseudomonas aeruginosa PG201 than graphene, exfoliated boron nitride, or carbon black. ACS Nano. 2018 Mar; 12(3):2728-2740. https://doi.org/10.1021/ACSNAN0.7B08977
- Mortimer M, Wang Y, Holden PA. Molecular mechanisms of nanomaterial-bacterial interactions revealed by omics—the role of nanomaterial effect level. Front Bioeng Biotechnol. 2021 Sep; 9:683520. https://doi.org/10.3389/FBI0E.2021.683520/BIBTEX
- Nawrotek P, Augustyniak A. [Nanotechnology in microbiology - Selected aspects] (in Polish). Post Mikrobiol. 2015 Jul; 54(3):275-282.
- Niemirowicz K, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias K, et al. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine. 2014 Mar; 9(1):2217-2224. https://doi.org/10.2147/IJN.S56588
- Ouyang B, Yilihamu A, Liu D, Ouyang P, Zhang D, Wu X, Yang ST. Toxicity and environmental impact of multi-walled carbon nanotubes to nitrogen-fixing bacterium Azotobacter chroococcum. J Environ Chem Eng. 2021 Apr; 9(4):105291. https://doi.org/10.1016/J.JECE.2021.105291
- Ouyang K, Mortimer M, Holden PA, Cai P, Wu Y, Gao C, Huang Q. Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): Role of NP concentration. Environ Int. 2020 Dec; 137:105485. https://doi.org/10.1016/j.envint.2020.105485
- Palmieri V, Bugli F, Lauriola MC, Cacaci M, Torelli R, Ciasca G, et al. Bacteria meet graphene: modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy. ACS Biomater Sci Eng. 2017 Apr; 3(4):619-627. https://doi.org/10.1021/ACSBI0MATERIALS.6B00812
- Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: challenges, recent advances, and future perspectives. Int J Pharm. 2024 Feb; 655:124046. https://doi.org/10.1016/J.IJPHARM.2024.124046
- Raya J, Montagut EJ, Marco MP. Analysing the integrated quorum sensing system: its potential role in Pseudomonas aeruginosa pathogenesis. Front Cell Infect Microbiol. 2025 Jan; 15:1575421. https://doi.org/10.3389/FCIMB.2025.1575421
- Selvakumar S, Rajendiran T, Biswas K. Current advances on biomedical applications and toxicity of MWCNTs: a review. BioNanoSci. 2023 Mar; 13(2):860-878. https://doi.org/10.1007/S12668-023-01110-4
- Sikora P, Augustyniak A, Cendrowski K, Nawrotek P, Mijowska E. Antimicrobial activity of AhO3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in cement-based building materials. Nanomaterials. 2018 Apr; 8(4):212. https://doi.org/10.3390/nano8040212
- Struk M, Grygorcewicz B, Nawrotek P, Augustyniak A, Konopacki M, Kordas M, Rakoczy R. Enhancing effect of 50 Hz rotating magnetic field on induction of Shiga toxin-converting lambdoid prophages. Microb Pathog. 2017 May; 109:4-7. https://doi.org/10.1016/j.micpath.2017.05.018
- Verma KK, Joshi A, Song XP, Singh S, Kumari A, Arora J, et al. Synergistic interactions of nanoparticles and plant growth promoting rhizobacteria enhancing soil-plant systems: a multigenerational perspective. Front Plant Sci. 2024 Mar; 15:1376214. https://doi.org/10.3389/FPLS.2024.1376214
- Wang M, Wang Y, Ni X, Hou X, Ma D, Li Q, Gao B. How multiwalled carbon nanotubes in wastewater influence the fate of coexisting antibiotic resistant genes in the subsequent disinfection process. Chemosphere. 2022 Sep; 302:134641. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134641
- Xu Y, Li H, Li X, Liu W. What happens when nanoparticles encounter bacterial antibiotic resistance? Sci Total Environ. 2023 Jul; 876:162856. https://doi.org/10.1016/J.SCITOTENV.2023.162856
- Yang K, Yang Y, Wang J, Huang X, Cui D, Zhao M. The influence of exogenous CdS nanoparticles on the growth and carbon assimilation efficiency of Escherichia coli. Biology (Basel). 2024 Oct; 13(10):847. https://doi.org/10.3390/BIOLOGY13100847
- Yang Y, Alvarez PJJ. Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ Sci Technol Lett. 2015 Aug; 2(8):221-226. https://doi.org/10.1021/ACS.ES-TLETT.5B00159
- You Y, Yu X, Jiang J, Chen Z, Zhu YX, Chen Y, et al. Bacterial cell wall-specific nanomedicine for the elimination of Staphylococcus aureus and Pseudomonas aeruginosa through electron-mechanical intervention. Nat Commun. 2025 Jan; 16(1):1-15. https://doi.org/10.1038/S41467-025-58061-5
- Zou L, Wang J, Gao Y, Ren X, Rottenberg ME, Lu J, Holmgren A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci Rep. 2018 Jan; 8(1):1-11. https://doi.org/10.1038/S41598-018-29313-W