Have a personal or library account? Click to login
Modular Virus-Like Particles: Building Nanoscale Platforms for Multiple Applications Cover

Modular Virus-Like Particles: Building Nanoscale Platforms for Multiple Applications

Open Access
|Dec 2025

References

  1. Bachmann MF, van Damme P, Lienert F, Schwarz TF. Viruslike particles: a versatile and effective vaccine platform. Expert Rev Vaccines. 2025 May; 24(1):444-456. https://doi.org/10.1080/14760584.2025.2508517
  2. Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetasecatalyzed biotinylation. Protein Sci. 1999 Apr; 8(4):921-929. https://doi.org/10.1110/ps.8.4.921
  3. BerreirosHortala H, VilchezPinto G, DiazPerales A, Garrido-Arandia M, TomeAmat J. Viruslike Particles as Vaccines for AllergenSpecific Therapy: An Overview of Current Developments. Int J Mol Sci. 2024 Jul; 25(13):7429. https://doi.org/10.3390/ijms25137429 MDPI
  4. Biela AP, Naskalska A, Fatehi F, Twarock R, Heddle JG. Programmable polymorphism of a virus-like particle. Commun Mater. 2022 Feb; 3:7. https://doi.org/10.1038/s43246-022-00229-3
  5. Brune KD, Howarth M. New Routes and Opportunities for Modular Construction of Particulate Vaccines: Stick, Click, and Glue. Front Immunol. 2018 Jun; 9:1432. https://doi.org/10.3389/fim-mu.2018.01432
  6. Bruun TUJ, Andersson AC, Draper SJ, Howarth M. Engineering a Rugged Nanoscaffold To Enhance PlugandDisplay Vaccination. ACS Nano. 2018 Sep; 12(9):8855-8866. https://doi.org/10.1021/acsnano.8b02805
  7. Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem. 2024 Dec; 105:81-134. https://doi.org/10.1007/978-3-031-65187-8_3
  8. Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering viruslike particle vaccines. Biotechnol Bioeng. 2019 Apr; 116(4):919-935. https://doi.org/10.1002/bit.26920
  9. Chiba S, Frey SJ, Halfmann PJ, Kuroda M, Maemura T, Yang JE, Wright ER, Kawaoka Y, Kane RS. Multivalent nanoparticlebased vaccines protect hamsters against SARSCoV-2 after a single immunization. Commun Biol. 2021 May; 4(1):597. https://doi.org/10.1038/s42003-021-02128-8
  10. Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Codelivery of Antigen and Adjuvant. Bioconjug Chem. 2023 Jan; 34(1):269-278. https://doi.org/10.1021/acs.bioconjchem.2c00601
  11. Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature. 2024 Dec; 638(8050):553-561. https://doi.org/10.1038/s41586-024-08360-6
  12. Fowler A, Van Rompay KKA, Sampson M, Leo J, Watanabe JK, Usachenko JL, Immareddy R, Lovato DM, Schiller JT, Remaley AT, Chackerian B. A viruslike particlebased bivalent PCSK9 vaccine lowers LDLcholesterol levels in nonhuman primates. NPJ Vaccines. 2023 Sep; 8(1):142. https://doi.org/10.1038/s41541-023-00743-6
  13. Freund C, Schwarzer D. Engineered Sortases in Peptide and Protein Chemistry. ChemBioChem. 2021 Feb 3; 22(8): 1347-1356. https://doi.org/10.1002/cbic.202000745
  14. Galinier R, Gout E, LortatJacob H, Wood J, Chroboczek J. Adenovirus protein involved in virus internalization recruits ubiquit-inprotein ligases. Biochemistry. 2002 Dec; 41(48): 14299-14305. https://doi.org/10.1021/bi020125b
  15. Goksøyr L, Skrzypczak M, Sampson M, Nielsen MA, Salanti A, Theander TG, Remaley AT, De Jongh WA, Sander AF. A cVLP-Based Vaccine Displaying Full-Length PCSK9 Elicits a Higher Reduction in Plasma PCSK9 Than Similar Peptide-Based cVLP Vaccines. Vaccines (Basel). 2022 Dec; 11(1):2. https://doi.org/10.3390/vaccines11010002
  16. Graham M, Zhang P. Cryoelectron tomography to study viral infection. Biochem Soc Trans. 2023 Aug; 51(4):1701-1711. https://doi.org/10.1042/BST20230103
  17. Grgacic EV, Anderson DA. Viruslike particles: passport to immune recognition. Methods. 2006 Sep; 40(1):60-65. https://doi.org/10.1016/j.ymeth.2006.07.018
  18. Hagge LM, Shahrivarkevishahi A, AlKharji NM, Chen Z, Brohlin OR, Trashi I, Tumac A, C Herbert F, Adlooru AV, Lee H, Firouzi HR, Cornelius SA, De Nisco NJ, Gassensmith JJ. Intracellular delivery of viruslike particles using a sheddable linker. J Mater Chem B. 2023 Jun; 11(30):7126-7133. https://doi.org/10.1039/D3TB00696D
  19. Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Yang JE, Wright ER, Kawaoka Y, Kane RS. Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spikeproteinnanoparticle vaccine. Nat Commun. 2024 Feb; 15(1):1284. https://doi.org/10.1038/s41467-024-45495-6
  20. He B, Wilson B, Chen SH, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. Int J Mol Sci. 2024 Oct; 25(20): 11094. https://doi.org/10.3390/ijms252011094
  21. He J, Yu L, Lin X, Liu X, Zhang Y, Yang F, Deng W. Viruslike Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses. 2022 Aug; 14(9):1905. https://doi.org/10.3390/v14091905
  22. Heddle JG, Chakraborti S, Iwasaki K. Natural and artificial protein cages: design, structure and therapeutic applications. Curr Opin Struct Biol. 2017 Mar; 43:148-155. https://doi.otg/10.1016Zj. sbi.2017.03.007
  23. Ikwuagwu B, TullmanErcek D. Viruslike particles for drug delivery: a review of methods and applications. Curr Opin Biotechnol. 2022 Dec; 78:102785. https://doi.org/10.1016/j.copbio.2022.102785
  24. Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene. 2004 May; 23(11):1972-1984. https://doi.org/10.1038/sj.onc.1207436
  25. Jagadish MN, Edwards SJ, Hayden MB, Grusovin J, Vandenberg K, Schoofs P, Hamilton RC, Shukla DD, Kalnins H, McNamara M, Haynes J, Nisbet IT, Ward CW, Pye D. Chimeric potyvirus-like particles as vaccine carriers. Intervirology. 1996; 39(12):85-92. https://doi.org/10.1159/000150479
  26. Janitzek CM, Peabody J, Thrane S, Carlsen PHR, Theander TG, Salanti A, Chackerian B, Nielsen MA, Sander AF. A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci Rep. 2019 Mar; 9(1):5260. https://doi.org/10.1038/s41598-019-41768-2
  27. King LDW, Pulido D, Barrett JR, Davies H, Quinkert D, Lias AM, Silk SE, Pattinson DJ, Diouf A, Williams BG, McHugh K, & Draper SJ. Preclinical development of a stabilized RH5 viruslike particle vaccine that induces improved antimalarial antibodies. Cell Rep Med. 2024 Jul; 5(7):101654. https://doi.org/10.1016/j. xcrm.2024.101654
  28. Knappe GA, Wamhoff EC, Read BJ, Irvine DJ, Bathe M. Covalent Functionalization of DNA Origami Viruslike Particles. ACS Nano. 2021 Sep; 15(9):14316-14322. https://doi.org/10.1021/acsna-no.1c03158
  29. Koho T, Ihalainen TO, Stark M, UusiKerttula H, Wieneke R, Rahikainen R, Blazevic V, Marjomäki V, Tampé R, Kulomaa MS, Hytönen VP. Histagged norovirus-like particles: A versatile platform for cellular delivery and surface display. Eur J Pharm Biopharm. 2015 Jul; 96(1):22-31. https://doi.org/10.1016/j.ejpb.2015.07.002
  30. Kopatz I, Zalk R, LeviKalisman Y, ZlotkinRivkin E, Frank GA, Kler S. Packaging of DNA origami in viral capsids. Nanoscale. 2019; 11(21):10160-10166. https://doi.org/10.1039/D2NR01316A
  31. Laitinen OH, Hytönen VP, Nordlund HR, Kulomaa MS. Genetically engineered avidins and streptavidins. Cell Mol Life Sci. 2006 Nov; 63(24):2992-3017. https://doi.org/10.1007/s00018-006-6288-z
  32. Lee S, Kibler RD, Ahn G, Hsia Y, Borst AJ, Philomin A, Kennedy MA, Huang B, Stoddard B, Baker D. Fourcomponent protein nanocages designed by programmed symmetry breaking. Nature. 2025 Feb; 638(8050):546-552. https://doi.org/10.1038/s41586-024-07814-1
  33. Leneghan DB, Miura K, Taylor IJ, Li Y, Jin J, Brune KD, Bachmann MF, Howarth M, Long CA, Biswas S. Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep. 2017 Jun; 7(1):3811. https://doi.org/10.1038/s41598-017-03798-3
  34. Li X, Pan C, Sun P, Peng Z, Feng E, Wu J, Wang H, Zhu L. Orthogonal modular biosynthesis of nanoscale conjugate vaccines for vaccination against infection. Nano Res. 2022 Feb; 15(2):1645-1653. https://doi.org/10.1007/s12274-021-4045-9
  35. Liu J, Guo Z, Li W, Zhang X, Liang C, Cui Z. Packaging Quantum Dots in Viral Particles via a Streptag II/Streptavidin System for SingleVirus Tracking. Nano Lett. 2024 Sep; 24(9):2821-2830. https://doi.org/10.1021/acs.nanolett.3c04570
  36. Luxembourg A, Brown D, Bouchard C, Giuliano AR, Iversen OE, Joura EA, Penny ME, Restrepo JA, Romaguera J, Maansson R, Moeller E, Ritter M, Chen J. Phase II studies to select the formulation of a multivalent HPV L1 viruslike particle (VLP) vaccine. Hum Vaccin Immunother. 2015 Apr; 11(6):1313-1322. https://doi.org/10.1080/21645515.2015.1012010
  37. Maginnis MS. VirusReceptor Interactions: The Key to Cellular Invasion. J Mol Biol. 2018 Oct; 430(17):2590-2611. https://doi.org/10.1016/j.jmb.2018.07.002
  38. Mao H, Hart SA, Schink A, Pollok BA. Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc. 2004 Mar; 126(9):2670-2671. https://doi.org/10.1021/ja0392070
  39. Marini A, Zhou Y, Li Y, Taylor IJ, Leneghan DB, Jin J, Zaric M, Mekhaiel D, Long CA, Miura K, Biswas S. A Universal Plug-and-Display Vaccine Carrier Based on HBsAg VLP to Maximize Effective Antibody Response. Front Immunol. 2019 Nov; 10:2931. https://doi.org/10.3389/fimmu.2019.02931
  40. McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines. 2022 Apr; 21(4):453-469. https://doi.org/10.1080/1 4760584.2022.2047121
  41. Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol. 2022 Sep; 19(9):993-1011. https://doi.org/10.1038/s41423-022-00904-4
  42. Mohsen MO, Speiser DE, Michaux J, Pak H, Stevenson BJ, Vogel M, Inchakalody VP, de Brot S, Dermime S, Coukos G, BassaniSternberg M, Bachmann MF. Bedside formulation of a personalized multineoantigen vaccine against mammary carcinoma. J Immunother Cancer. 2022 Jan; 10(1):e002927. https://doi.org/10.1136/jitc-2021-002927
  43. Muthuraman KR, Utomo DIS, Matsuda M, Suzuki R, Park EY. Expression of dengue capsidlike particles in silkworm and display of envelope domain III of dengue virus serotype 2. Protein Expr Purif. 2024; 222:106543. https://doi.org/10.1016/j.pep.2024.106543
  44. Naskalska A, Pyrć K. Virus Like Particles as Immunogens and Universal Nanocarriers. Pol J Microbiol. 2015 Mar; 64(1):3-13. https://doi.org/10.33073/pjm-2015-001
  45. Naskalska A, Szolajska E, Andreev I, Podsiadla M, Chroboczek J. Towards a novel influenza vaccine: engineering of hemagglutinin on a platform of adenovirus dodecahedron. BMC Biotechnol. 2013 Jul; 13:50. https://doi.org/10.1186/1472-6750-13-50
  46. Naskalska A, Szolajska E, Chaperot L, Angel J, Plumas J, Chroboczek J. Influenza recombinant vaccine: matrix protein M1 on the platform of the adenovirus dodecahedron. Vaccine. 2009 Dec; 27(52):7385-7393. https://doi.org/10.1016/j.vaccine.2009.09.022
  47. Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology. 2021 Mar; 19(1):59. https://doi.org/10.1186/s12951-021-00806-7
  48. Panasiuk M, Chraniuk M, Zimmer K, Hovhannisyan L, Krapchev V, PeszyńskaSularz G, Narajczyk M, Węsławski J, Konopacka A, Gromadzka B. Characterization of surface-exposed structural loops as insertion sites for foreign antigen delivery in calicivirus-derived VLP platform. Front Microbiol. 2023 Aug; 14:1111947. https://doi.org/10.3389/fmicb.2023.1111947
  49. Patterson D, Schwarz B, Avera J, Western B, Hicks M, Krugler P, Terra M, Uchida M, McCoy K, Douglas T. Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. Bioconjug Chem. 2017 Aug; 28(8):2114-2124. https://doi.org/10.1021/acs.bioconjchem.7b00308
  50. Pereboeva L, Komarova S, Roth J, Ponnazhagan S, Curiel DT. Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus. Gene Ther. 2007 Aug; 14(8):627-637. https://doi.org/10.1038/sj.gt.3302922
  51. Perler FB. Protein splicing mechanisms and applications. IUBMB Life. 2005 Jul; 57(7):469-476. https://doi.org/10.1080/15216540500239945
  52. Petty KJ. Metal-chelate affinity chromatography. Curr Protoc Mol Biol. 2001; Chapter 10:Unit 10.11B. https://doi.org/10.1002/0471142727.mb1011bs57
  53. Pillai A, Idris A, Philomin A, Weidle C, Skotheim R, Leung PJY, Broerman A, Demakis C, Borst AJ, Praetorius F, Baker D. De novo design of allosterically switchable protein assemblies. Nature. 2024 Oct; 632(8026):911-920. https://doi.org/10.1038/s41586-024-05447-4
  54. Pokorski JK, Hovlid ML, Finn MG. Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. Chem biochem. 2011 Aug; 12(16):2441-2447. https://doi.org/10.1002/cbic.201100309
  55. Rahikainen R, Rijal P, Tan TK, Wu HJ, Andersson AC, Barrett JR, Bowden TA, Draper SJ, Townsend AR, Howarth M. Overcoming Symmetry Mismatch in Vaccine Nanoassembly through Spontaneous Amidation. Angew Chem Int Ed. 2021 Jan; 133(1):325-334. https://doi.org/10.1002/ange.202012676
  56. Riedmiller I, Fougeroux C, Jensen RW, Kana IH, Sander AF, Theander TG, Lavstsen T, Turner L. Mosaic and cocktail capsid-virus-like particle vaccines for induction of antibodies against the EPCR-binding CIDRα1 domain of PfEMP1. PLoS One. 2024 Jul; 19(7):e0302243. https://doi.org/10.1371/journal.pone.0302243
  57. Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med. 2017 Jan; 2(1):43-57. https://doi.org/10.1002/btm2.10049
  58. Seitz I, Saarinen S, Kumpula EP, McNeale D, Anaya-Plaza E, Lampinen V, Hytönen VP, Sainsbury F, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. DNA-origami-directed virus capsid polymorphism. Nat Nanotechnol. 2023 Oct; 18(10):1205-1212. https://doi.org/10.1038/s41565-023-01469-6
  59. Seitz I, Saarinen S, Wierzchowiecka J, Kumpula EP, Shen B, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. Folding of mRNA-DNA Origami for Controlled Translation and Viral Vector Packaging. Adv Mater. 2025 Apr; 37(15):e2417642. https://doi.org/10.1002/adma.202417642
  60. Sharma J, Uchida M, Miettinen HM, Douglas T. Modular interior loading and exterior decoration of a virus-like particle. Nanoscale. 2017 Jul; 9(29):10420-10430. https://doi.org/10.1039/c7nr02367d
  61. Shepley-McTaggart A, Fan H, Sudol M, Harty RN. Viruses go modular. J Biol Chem. 2020 Apr; 295(14):4604-4616. https://doi.org/10.1074/jbc.REV120.011760
  62. Smith ML, Lindbo JA, Dillard-Telm S, Brosio PM, Lasnik AB, McCormick AA, Nguyen LV, Palmer KE. Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology. 2006 Sep; 348(2):475-488. https://doi.org/10.1016/j.virol.2006.06.011
  63. Smith MT, Hawes AK, Bundy BC. Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Biotechnol. 2013 Aug; 24(4):620-626. https://doi.org/10.1016/j.copbio.2013.03.009
  64. Strable E, Finn MG. Chemical modification of viruses and virus-like particles. Curr Top Microbiol Immunol. 2009; 327:1-21. https://doi.org/10.1007/978-3-540-92165-3_1
  65. Su S, Shen X, Shi X, Li X, Chen J, Yang W, Sun M, Tang YD, Wang H, Wang S, Cai X, Lu Y, An T, Yang Y, Meng F. Cell-penetrating peptides TAT and 8R functionalize P22 virus-like particles to enhance tissue distribution and retention. Front Vet Sci. 2024 Apr; 11:1460973. https://doi.org/10.3389/fvets.2024.1460973
  66. Sun J, DuFort C, Daniel MC, Murali A, Chen C, Gopinath K, Stein B, De M, Rotello VM, Holzenburg A, Kao CC, Dragnea B. Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci US A. 2007 Jan; 104(4): 1354-1359. https://doi.org/10.1073/pnas.0610052104
  67. Tang J, Becker M, Lenhoff A, Chen W. Engineering of heterobifunctional biopolymers for tunable binding and precipitation of Strep-Tag proteins and virus-like nanoparticles. Biotechnol Bioeng. 2024 Dec; 121(12):3860-3868. https://doi.org/10.1002/bit.29587
  68. Tang S, Xuan B, Ye X, Huang Z, Qian Z. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles. Sci Rep. 2016 May; 6:25741. https://doi.org/10.1038/srep25741
  69. Thrane S, Janitzek CM, Agerbæk M, Ditlev SB, Resende M, Nielsen MA, Theander TG, Salanti A, Sander AF. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA. PLoS One. 2015 Nov; 10(11):e0143071. https://doi.org/10.1371/journal.pone.0143071
  70. Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci. 2023 Jun; 24(12). https://doi.org/10.3390/ijms24121456
  71. Voss S, Skerra A. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 1997 Aug; 10(8):975-982. https://doi.org/10.1093/protein/10.8.975
  72. Wang Z, Tang S, Yue N, Qian Z, Zhou S. Development of HBc virus-like particles as modular nanocarrier by intein-mediated trans-splicing. Biochem Biophys Res Commun. 2021 Dec; 534:891895. https://doi.org/10.1016/j.bbrc.2020.12.030
  73. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, Ahern W, Borst AJ, Ragotte RJ, & Baker D. De novo design of protein structure and function with RFdiffusion. Nature. 2023 Apr; 620(7976): 1089-1100. https://doi.org/10.1038/s41586-023-06457-8
  74. Woods MD, Cali M, Ceesay B, Fancher S, Ibrasheva G, Kandeel S, Nassar M, Azghani A, Bill B, Patterson DP. Engineering the HK97 virus-like particle as a nanoplatform for biotechnology applications. J Mater Chem B. 2023 Jul; 11(26):6060-6074. https://doi.org/10.1039/d3tb01065k
  75. Yang MH, Hu CC, Wong CH, Liang JJ, Ko HY, He MH, Lin YL, Lin NS, Hsu YH. Convenient Auto-Processing Vector Based on Bamboo Mosaic Virus for Presentation of Antigens Through Enzymatic Coupling. Front Immunol. 2021 Aug; 12:739837. https://doi.org/10.3389/fimmu.2021.739837
  76. Yasuda J, Nakao M, Kawaoka Y, Shida H. Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol. 2003 Sep; 77(18):9987-9992. https://doi.org/10.1128/jvi.77.18.9987-9992.2003
  77. Yin Z, Comellas-Aragones M, Chowdhury S, Bentley P, Kaczanowska K, Benmohamed L, Gildersleeve JC, Finn MG, Huang X. Boosting immunity to small tumor-associated carbohydrates with bacteriophage qβ capsids. ACS Chem Biol. 2013 Jun; 8(6):1253-1262. https://doi.org/10.1021/cb400126q
  78. Yur D, Sullivan MO, Chen W. Highly modular hepatitis B virus-like nanocarriers for therapeutic protein encapsulation and targeted delivery to triple negative breast cancer cells. J Mater Chem B. 2023 May; 11(18):3985-3993. https://doi.org/10.1039/d3tb00456a
  79. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012 Mar; 109(12):E690-E697. https://doi.org/10.1073/pnas.1115485109
  80. Zdanowicz M, Chroboczek J. Virus-like particles as drug delivery vectors. Acta Biochim Pol. 2016 Jul; 63(3):469-473. https://doi.org/10.18388/abp.2015_1149
DOI: https://doi.org/10.2478/am-2025-0015 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 192 - 201
Submitted on: Jun 30, 2025
|
Accepted on: Nov 24, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Antonina Naskalska, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.